Consenso sobre el uso de proteína en el paciente crítico – ACNC

Autores/as

  • Diana Trejos- Gallego
  • Fernando Pereira P.
  • Angélica Pérez C.
  • Janeth Barbosa B.
  • Juan B. Ochoa Gautier
  • Dan Waitzberg
  • Bladimir Gil V.
  • Erika Aguirre M.
  • Mario A. Castillo B.
  • Camilo E. Pizarro G.
  • Nestor D. Caicedo B.
  • Lina López
  • Mauricio Chona
  • Ninfa Cristina Correa S.
  • Luisa F. Torres N.
  • Martha E Muñoz P.
  • Claudia M. Ardila M.
  • Carolina Pinzón O.
  • Diana P Córdoba R.
  • Ana C. Pardo C.
  • Vera C. Nuñez R.

DOI:

https://doi.org/10.35454/rncm.v6n2.494

Palabras clave:

Cuidado Crítico, cuidado intensivo, proteína, dosis de proteína, tipo de proteína

Resumen

El paciente crítico tiene una pérdida de masa muscular significativa, y se observa sarcopenia frecuentemente en estos pacientes. Su presencia aumenta los desenlaces adversos, estancias hospitalarias, mayor riesgo de infecciones, aumento del tiempo de asistencia ventilatoria mecánica, mayor discapacidad al alta hospitalaria, menor posibilidad del retorno normal a la vida habitual de los pacientes, incremento en gastos en salud y mayor mortalidad.

Objetivo: indicar el uso oportuno y adecuado de la proteína en el paciente crítico.

Métodos: la Asociación Colombiana de Nutrición Clínica (ACNC) y la Asociación Colombiana de Medicina Crítica y Cuidados Intensivos (AMCI), mediante la metodología de consenso, realizaron unas recomendaciones con un grupo de expertos.

Resultados: 46 recomendaciones fueron aprobadas con un consenso superior al 80 %.

Conclusiones: la intervención óptima proteica temprana y progresiva en el paciente crítico es importante para obtener los mejores desenlaces clínicos, disminuir complicaciones e impactar en costos de atención hospitalaria.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Fernando Pereira P.

Médico cirujano e Intensivista

Angélica Pérez C.

Nutricionista

Janeth Barbosa B.

Nutricionista

Juan B. Ochoa Gautier

Médico intensivista

Dan Waitzberg

Médico Especialista

Bladimir Gil V.

Medico intensivista

Erika Aguirre M.

Nutricionista

Mario A. Castillo B.

Médico intensivista

Camilo E. Pizarro G.

Médico intensivista

Nestor D. Caicedo B.

Médico intensivista

Lina López

Enfermera

Mauricio Chona

Médico cirujano

Ninfa Cristina Correa S.

Nutricionista

Luisa F. Torres N.

Nutricionista

Martha E Muñoz P.

Nutricionista

Claudia M. Ardila M.

Nutricionista

Carolina Pinzón O.

Nutricionista

Diana P Córdoba R.

Nutricionista

Ana C. Pardo C.

Fisioterapeuta

Vera C. Nuñez R.

Enfermera

Citas

Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi: 10.1093/ageing/afy169

Compher C, Bingham AL, McCall M, Patel J, Rice TW, Braunschweig C, et al. Guidelines for the provision of nutrition support therapy in the adult critically ill patient: The American Society for Parenteral and Enteral Nutrition. JPEN. 2022;46(1):12-41. doi: 10.1002/jpen.2267

Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48-79. doi: 10.1016/j.clnu.2018.08.037

Patkova A, Joskova V, Havel E, Kovarik M, Kucharova M, Zadak Z, et al. Energy, Protein, Carbohydrate, and Lipid Intakes and Their Effects on Morbidity and Mortality in Critically Ill Adult Patients: A Systematic Review. Adv Nutr. 2017;8(4):624-634. doi: 10.3945/an.117.015172

van Zanten ARH, De Waele E, Wischmeyer PE. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit Care. 2019;23(1):368. doi: 10.1186/s13054-019-2657-5

McClave SA, Wischmeyer PE, Miller KR, van Zanten ARH. Mitochondrial Dysfunction in Critical Illness: Implications for Nutritional Therapy. Curr Nutr Rep. 2019;8(4):363-373. doi: 10.1007/s13668-019-00296-y

Chapple LS, van Gassel RJJ, Rooyackers O. Protein metabolism in critical illness. Curr Opin Crit Care. 2022;28(4):367-373. doi: 10.1097/MCC. 0000000000000959

Arabi YM, Al-Dorzi HM, Sadat M. Protein intake and outcome in critically ill patients. Curr Opin Clin Nutr Metab Care. 2020;23(1):51-58. doi: 10.1097/MCO.0000000000000619

Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Güiza F, et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. 2011;96(4): E633-E645. doi: 10.1210/jc.2010-2563

Gunst J. Recovery from critical illness-induced organ failure: the role of autophagy. Crit Care. 2017;21(1):209. doi: 10.1186/s13054-017-1786-y

Van Dyck L, Casaer MP, Gunst J. Autophagy and Its Implications Against Early Full Nutrition Support in Critical Illness. Nutr Clin Pract. 2018;33(3):339-347. doi: 10.1002/ncp.10084

Varela-Ruiz M, Díaz-Bravo L, García-Durán R. Descripción y usos del método Delphi en investigaciones del área de la salud. Inv Ed Médica. 2012;1(2):90-5.

Yanagi N, Koike T, Kamiya K, Hamazaki N, Nozaki K, Ichikawa T, et al. Assessment of Sarcopenia in the Intensive Care Unit and 1-Year Mortality in Survivors of Critical Illness. Nutrients. 2021;13(8):2726. doi: 10.3390/nu13082726

Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population: A Multicenter, Multinational Observation Study. JPEN J Parenter Enteral Nutr. 2016;40(1):45-51. doi: 10.1177/0148607115583675

Moisey LL, Mourtzakis M, Cotton BA, Premji T, Heyland DK, Wade CE, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients. Crit Care. 2013;17(5):R206. doi: 10.1186/cc12901

Elke G, Wang M, Weiler N, Day AG, Heyland DK. Close to recommended caloric and protein intake by enteral nutrition is associated with better clinical outcome of critically ill septic patients: secondary analysis of a large international nutrition database. Crit Care. 2014;18(1):R29. doi: 10.1186/cc13720

Hermans G, Van Mechelen H, Clerckx B, Vanhullebusch T, Mesotten D, Wilmer A, et al. Acute outcomes and 1-year mortality of intensive care unit-acquired weakness. A cohort study and propensity-matched analysis. Am J Respir Crit Care Med. 2014;190(4):410-20. doi: 10.1164/rccm.201312-2257OC

Kou HW, Yeh CH, Tsai HI, Hsu CC, Hsieh YC, Chen WT, et al. Sarcopenia is an effective predictor of difficult-to-wean and mortality among critically ill surgical patients. PLoS One. 2019;14(8):e0220699. doi: 10.1371/journal.pone. 0220699

Kizilarslanoglu MC, Kuyumcu ME, Yesil Y, Halil M. Sarcopenia in critically ill patients. J Anesth. 2016;30(5):884-90. doi: 10.1007/s00540-016-2211-4

Monk DN, Plank LD, Franch-Arcas G, Finn PJ, Streat SJ, Hill GL. Sequential changes in the metabolic response in critically injured patients during the first 25 days after blunt trauma. Ann Surg. 1996;223(4):395-405. doi: 10.1097/00000658-199604000-00008

Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300-307.e2. doi: 10.1016/j.jamda.2019.12.012

Vetrano DL, Landi F, Volpato S, Corsonello A, Meloni E, Bernabei R, et al. Association of sarcopenia with short- and long-term mortality in older adults admitted to acute care wards: results from the CRIME study. J Gerontol a Biol Sci Med Sci. 2014;69(9):1154-61. doi: 10.1093/gerona/glu034

Compher C, Chittams J, Sammarco T, Nicolo M, Heyland DK. Greater Protein and Energy Intake May Be Associated with Improved Mortality in Higher Risk Critically Ill Patients: A Multicenter, Multinational Observational Study. Crit Care Med. 2017;45(2):156-163. doi: 10.1097/CCM.0000000000002083

Lee ZY, Yap CSL, Hasan MS, Engkasan JP, Barakatun-Nisak MY, Day AG, et al. The effect of higher versus lower protein delivery in critically ill patients: a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2021;25(1):260. doi: 10.1186/s13054-021-03693-4

Wischmeyer PE. Tailoring nutrition therapy to illness and recovery. Crit Care. 2017;21(Suppl 3):316. doi: 10.1186/s13054-017-1906-8

Hoffer LJ, Dickerson RN, Martindale RG, McClave SA, Ochoa Gautier JB. Will We Ever Agree on Protein Requirements in the Intensive Care Unit? Nutr Clin Pract. 2017;32(1_suppl):94S-100S. doi: 10.1177/0884533617694613

Weijs PJ, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, et al. Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN. 2012;36(1):60-8. doi: 10.1177/0148607111415109

Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, Espersen K, Hartvig Jensen T, Wiis J, et al. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin Nutr. 2012;31(4):462-8. doi: 10.1016/j.clnu.2011.12.006

Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Twisk JW, Oudemans-van Straaten HM, et al. Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit Care. 2016;20(1):386. doi: 10.1186/s13054-016-1563-3

Zusman O, Theilla M, Cohen J, Kagan I, Bendavid I, Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study. Crit Care. 2016;20(1):367. doi: 10.1186/s13054-016-1538-4

Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. JPEN J Parenter Enteral. 2016;40(6):795-805. doi: 10.1177/0148607115618449

Wischmeyer PE, Hasselmann M, Kummerlen C, Kozar R, Kutsogiannis DJ, Karvellas CJ, et al. A randomized trial of supplemental parenteral nutrition in underweight and overweight critically ill patients: the TOP-UP pilot trial. Crit Care. 2017;21(1):142. doi: 10.1186/s13054-017-1736-8

Allingstrup MJ, Kondrup J, Wiis J, Claudius C, Pedersen UG, Hein-Rasmussen R, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial. Intensive Care Med. 2017;43(11):1637-1647. doi: 10.1007/s00134-017-4880-3

Rugeles S, Villarraga-Angulo LG, Ariza-Gutiérrez A, Chaverra-Kornerup S, Lasalvia P, Rosselli D. High-protein hypocaloric vs normocaloric enteral nutrition in critically ill patients: A randomized clinical trial. J Crit Care. 2016; 35:110-4. doi: 10.1016/j.jcrc.2016.05.004

Hurt RT, McClave SA, Martindale RG, Ochoa Gautier JB, Coss-Bu JA, Dickerson RN, et al. Summary Points and Consensus Recommendations from the International Protein Summit. Nut Clin Pract. 2017;32(1_suppl):142S-151S. doi: 10.1177/0884533617693610

Price D, Jackson KG, Lovegrove JA, Givens DI. The effects of whey proteins, their peptides and amino acids on vascular function. Nutr Bull. 2022;47(1):9-26. doi: 10.1111/nbu.12543

de Aguilar-Nascimento JE, Prado Silveira BR, Dock-Nascimento DB. Early enteral nutrition with whey protein or casein in elderly patients with acute ischemic stroke: a double-blind randomized trial. Nutrition. 2011;27(4):440-4. doi: 10.1016/j.nut.2010.02.013

A Castro LH, S de Araújo FH, M Olimpio MY, B de B Primo R, T Pereira T, F Lopes LA, et al. Comparative Meta-Analysis of the Effect of Concentrated, Hydrolyzed, and Isolated Whey Protein Supplementation on Body Composition of Physical Activity Practitioners. Nutrients. 2019;11(9):2047. doi: 10.3390/nu11092047

Liu J, Klebach M, Visser M, Hofman Z. Amino Acid Availability of a Dairy and Vegetable Protein Blend Compared to Single Casein, Whey, Soy, and Pea Proteins: A Double-Blind, Cross-Over Trial. Nutrients. 2019;11(11):2613. doi: 10.3390/nu11112613

Norouzi M, Nadjarzadeh A, Maleki M, Khayyatzadeh SS, Hosseini S, Yaseri M, et al. The effects of preoperative supplementation with a combination of beta-hydroxy-beta-methylbutyrate, arginine, and glutamine on inflammatory and hematological markers of patients with heart surgery: a randomized controlled trial. BMC Surg. 2022;22(1):51. doi: 10.1186/s12893-022-01495-1

Dechaphunkul T, Arundon T, Raungkhajon P, Jiratrachu R, Geater SL, Dechaphunkul A. Benefits of immunonutrition in patients with head and neck cancer receiving chemoradiation: A phase II randomized, double-blind study. Clin Nutr. 2022;41(2):433-440. doi: 10.1016/j.clnu.2021.12.035

Ochoa Gautier JB. Dietary modification of myeloid-derived suppressor cells (MDSC) activity in sepsis. Proc Natl Acad Sci U S A. 2022;119(12):e2201396119. doi: 10.1073/pnas.2201396119

Brajcich BC, Stigall K, Walsh DS, Varghese TK, Barber AE, Kralovich KA, et al. Preoperative Nutritional Optimization of the Oncology Patient: A Scoping Review. J Am Coll Surg. 2022;234(3):384-394. doi: 10.1097/XCS.0000000000000055

Wang SY, Hung YL, Hsu CC, Hu CH, Huang RY, Sung CM, et al. Optimal Perioperative Nutrition Therapy for Patients Undergoing Pancreaticoduodenectomy: A Systematic Review with a Component Network Meta-Analysis. Nutrients. 2021;13(11):4049. doi: 10.3390/nu13114049

Rees CA, Rostad CA, Mantus G, Anderson EJ, Chahroudi A, Jaggi P, et al. Altered amino acid profile in patients with SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2021;118(25):e2101708118. doi: 10.1073/pnas.2101708118

Niu JW, Zhou L, Liu ZZ, Pei DP, Fan WQ, Ning W. A Systematic Review and Meta-Analysis of the Effects of Perioperative Immunonutrition in Gastrointestinal Cancer Patients. Nutr Cancer. 2021;73(2):252-261. doi: 10.1080/01635581.2020.1749291

Yu K, Zheng X, Wang G, Liu M, Li Y, Yu P, et al. Immunonutrition vs Standard Nutrition for Cancer Patients: A Systematic Review and Meta-Analysis (Part 1). JPEN J Parenter Enteral Nutr. 2020;44(5):742-767. doi: 10.1002/jpen.1736

Gao B, Luo J, Liu Y, Zhong F, Yang X, Gan Y, et al. Clinical Efficacy of Perioperative Immunonutrition Containing Omega-3-Fatty Acids in Patients Undergoing Hepatectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Ann Nutr Metab. 2020;76(6):375-386. doi: 10.1159/000509979

Adiamah A, Skořepa P, Weimann A, Lobo DN. The Impact of Preoperative Immune Modulating Nutrition on Outcomes in Patients Undergoing Surgery for Gastrointestinal Cancer: A Systematic Review and Meta-analysis. Ann Surg. 2019;270(2):247-256. doi: 10.1097/SLA.0000000000003256

Hamilton-Reeves JM, Stanley A, Bechtel MD, Yankee TM, Chalise P, Hand LK, et al. Perioperative Immunonutrition Modulates Inflammatory Response after Radical Cystectomy: Results of a Pilot Randomized Controlled Clinical Trial. J Urol. 2018;200(2):292-301. doi: 10.1016/j.juro.2018.03.001

Banerjee S, Garrison LP, Danel A, Ochoa Gautier JB, Flum DR. Effects of arginine-based immunonutrition on inpatient total costs and hospitalization outcomes for patients undergoing colorectal surgery. Nutrition. 2017;42:106-113. doi: 10.1016/j.nut.2017.06.002

Hamilton-Reeves JM, Bechtel MD, Hand LK, Schleper A, Yankee TM, Chalise P, et al. Effects of Immunonutrition for Cystectomy on Immune Response and Infection Rates: A Pilot Randomized Controlled Clinical Trial. Eur Urol. 2016;69(3):389-92. doi: 10.1016/j.eururo.2015.11.019

Raber P, Ochoa AC, Rodríguez PC. Metabolism of L-arginine by myeloid-derived suppressor cells in cancer: mechanisms of T cell suppression and therapeutic perspectives. Immunol Invest. 2012;41(6-7):614-34. doi: 10.3109/08820139.2012.680634

Popovic PJ, Zeh HJ 3rd, Ochoa JB. Arginine and immunity. J Nutr. 2007;137(6 Suppl 2):1681S-1686S. doi: 10.1093/jn/137.6.1681S

Zea AH, Rodríguez PC, Culotta KS, Hernández CP, DeSalvo J, Ochoa JB, et al. L-Arginine modulates CD3zeta expression and T cell function in activated human T lymphocytes. Cell Immunol. 2004;232(1-2):21-31. doi: 10.1016/j.cellimm.2005.01.004

Ochoa JB, Makarenkova V, Bansal V. A rational use of immune enhancing diets: when should we use dietary arginine supplementation? Nutr Clin Pract. 2004;19(3):216-25. doi: 10.1177/0115426504019003216

Brown RO, Compher C; American Society for Parenteral and Enteral Nutrition Board of Directors. A.S.P.E.N. clinical guidelines: nutrition support in adult acute and chronic renal failure. JPEN J Parenter Enteral Nutr. 2010;34(4):366-77. doi: 10.1177/0148607110374577

Cho WH, Choi YY, Byun KS, Lee SE, Jeon D, Kim YS, et al. Prognostic Value of Sarcopenia for Long-Term Mortality in Extracorporeal Membrane Oxygenation for Acute Respiratory Failure. ASAIO J. 2020;66(4):367-372. doi:10.1097/MAT.0000000000001006

Bear DE, MacGowan L, Elstad M, Puthucheary Z, Connolly B, Wright R, et al. Relationship Between Skeletal Muscle Area and Density and Clinical Outcome in Adults Receiving Venovenous Extracorporeal Membrane Oxygenation. Crit Care Med. 2021;49(4):e350-e359. doi: 10.1097/CCM.0000000000004827

Pelekhaty SL, Galvagno SM Jr, Lantry JH, Dolly KN, Herr DL, Kon ZN, et al. Are Current Protein Recommendations for the Critically Ill Adequate for Patients on VV ECMO: Experience from a High-Volume Center. JPEN J Parenter Enteral. 2020;44(2):220-226. doi: 10.1002/jpen.1602

Moreira E, Burghi G, Manzanares W. Update on metabolism and nutrition therapy in critically ill burn patients. Med Intensiva (Engl Ed). 2018;42(5):306-316. doi: 10.1016/j.medin.2017.07.007

Oudemans-van Straaten HM, Bosman RJ, Treskes M, van der Spoel HJ, Zandstra DF. Plasma glutamine depletion and patient outcome in acute ICU admissions. Intensive Care Med. 2001;27(1):84-90. doi: 10.1007/s001340000703

Heyland DK, Wibbenmeyer L, Pollack JA, Friedman B, Turgeon AF, Eshraghi N, et al.; RE-ENERGIZE Trial Team. A Randomized Trial of Enteral Glutamine for Treatment of Burn Injuries. N Engl J Med. 2022;387(11):1001-1010. doi: 10.1056/NEJMoa2203364

Taylor BE, McClave SA, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). Crit Care Med. 2016; 44(2): 390-438. doi: 10.1097/CCM.0000000000001525

Fiaccadori E, Sabatino A, Barazzoni R, Carrero JJ, Cupisti A, De Waele E, et al. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin Nutr. 2021;40(4):1644-1668. doi: 10.1016/j.clnu.2021.01.028

Wong L, Duque G, McMahon LP. Sarcopenia and Frailty: Challenges in Mainstream Nephrology Practice. Kidney Int Rep. 2021;6(10):2554-2564. doi: 10.1016/j.ekir.2021.05.039

Weijs PJ, Looijaard WG, Beishuizen A, Girbes AR, Oudemans-van Straaten HM. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit Care. 2014;18(6):701. doi: 10.1186/s13054-014-0701-z

McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Society of Critical Care Medicine; American Society for Parenteral and Enteral Nutrition. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN. 2016;40(2):159-211. doi: 10.1177/0148607115621863

van Zanten ARH, Petit L, De Waele J, Kieft H, de Wilde J, van Horssen P, et al. Very high intact-protein formula successfully provides protein intake according to nutritional recommendations in overweight critically ill patients: a double-blind randomized trial. Crit Care. 2018;22(1):156. doi: 10.1186/s13054-018-2070-5

Elke G, Hartl WH, Kreymann KG, Adolph M, Felbinger TW, Graf T, et al. Clinical Nutrition in Critical Care Medicine - Guideline of the German Society for Nutritional Medicine (DGEM). Clin Nutr ESPEN. 2019; 33:220-275. doi: 10.1016/j.clnesp.2019.05.002

Koekkoek WACK, van Setten CHC, Olthof LE, Kars JCNH, van Zanten ARH. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin Nutr. 2019;38(2):883-890. doi: 10.1016/j.clnu.2018.02.012

Weijs PJ. Fundamental determinants of protein requirements in the ICU. Curr Opin Clin Nutr Metab Care. 2014;17(2):183-9. doi: 10.1097/MCO.0000000000000029

De Waele E, Malbrain MLNG, Spapen H. Nutrition in Sepsis: A Bench-to-Bedside Review. Nutrients. 2020;12(2):395. doi: 10.3390/nu12020395

Powell NJ, Collier B. Nutrition and the open abdomen. Nutr Clin Pract. 2012;27(4):499-506. doi: 10.1177/0884533612450918

Chabot E, Nirula R. Open abdomen critical care management principles: resuscitation, fluid balance, nutrition, and ventilator management. Trauma Surg Acute Care Open. 2017;2(1):e000063. doi: 10.1136/tsaco-2016-000063

Polk TM, Schwab CW. Metabolic and nutritional support of the enterocutaneous fistula patient: a three-phase approach. World J Surg. 2012;36(3):524-33. doi: 10.1007/s00268-011-1315-0

Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, et al. Canadian Critical Care Trials Group. A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med. 2013;368(16):1489-97. doi: 10.1056/NEJMoa1212722

Bischoff SC, Bernal W, Dasarathy S, Merli M, Plank LD, Schütz T, et al. ESPEN practical guideline: Clinical nutrition in liver disease. Clin Nutr. 2020;39(12):3533-3562. doi: 10.1016/j.clnu.2020.09.001

Secombe P, Harley S, Chapman M, Aromataris E. Feeding the critically ill obese patient: a systematic review protocol. JBI Database System Rev Implement Rep. 2015;13(10):95-109. doi: 10.11124/jbisrir-2015-2458

Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr. 2019;38(2):584-593. doi: 10.1016/j.clnu.2018.07.009

Nunes EA, Colenso-Semple L, McKellar SR, Yau T, Ali MU, Fitzpatrick-Lewis D, et al. Systematic review and meta-analysis of protein intake to support muscle mass and function in healthy adults. J Cachexia Sarcopenia Muscle. 2022;13(2):795-810. doi: 10.1002/jcsm.12922

Molinger J, Pastva AM, Whittle J, Wischmeyer PE. Novel approaches to metabolic assessment and structured exercise to promote recovery in ICU survivors. Curr Opin Crit Care. 2020;26(4):369-378. doi: 10.1097/MCC.0000000000000748

Boelens YFN, Melchers M, van Zanten ARH. Poor physical recovery after critical illness: incidence, features, risk factors, pathophysiology, and evidence-based therapies. Curr Opin Crit Care. 2022;28(4):409-416. doi: 10.1097/MCC.0000000000000955

Glover EI, Phillips SM, Oates BR, Tang JE, Tarnopolsky MA, Selby A, et al. Immobilization induces anabolic resistance in human myofibrillar protein synthesis with low and high dose amino acid infusion. J Physiol. 2008;586(24):6049-61. doi: 10.1113/jphysiol.2008.160333

Descargas

Publicado

2023-05-24

Cómo citar

Trejos- Gallego, D., Pereira P., F. ., Pérez C., A. ., Barbosa B., J., Ochoa Gautier, J. B., Waitzberg, D., Gil V. , B., Aguirre M. , E., Castillo B. , M. A., Pizarro G. , C. E., Caicedo B., N. D., López, L. ., Chona, M., Correa S., N. C., Torres N., L. F., Muñoz P. , M. E., Ardila M. , C. M., Pinzón O. , C., Córdoba R. , D. P., Pardo C. , A. C., & Nuñez R. , V. C. (2023). Consenso sobre el uso de proteína en el paciente crítico – ACNC. Revista De Nutrición Clínica Y Metabolismo, 6(2). https://doi.org/10.35454/rncm.v6n2.494

Número

Sección

Artículo original

Artículos más leídos del mismo autor/a