Relación entre los ácidos biliares y la microbiota intestinal ¿es posible considerarlo como un factor etiológico en diversas colangiopatías? Una revisión narrativa

Autores/as

DOI:

https://doi.org/10.35454/rncm.v4n4.287

Palabras clave:

Microbiota, Ácidos biliares, Colangiopatías

Resumen

Los ácidos biliares, cuyo precursor es el colesterol de la dieta, tienen una importancia fundamental en el metabolismo de los lípidos ingeridos, siendo tal vez su función más divulgada. Sin embargo, estos interactúan de manera recíproca con el metabolismo bacteriano intestinal, mediante las señales moleculares, que permiten una modificación tanto en la abundancia como en la diversidad de la microbiota intestinal. Esta última se ha considerado como el nuevo órgano, y ha tenido un estudio a profundidad en los últimos años gracias a los avances y la optimización en los métodos diagnósticos, lo que permite determinar su implicación en enfermedades no solo del tracto gastrointestinal, sino a nivel sistémico.

El objetivo de la presente revisión es identificar las diferentes alteraciones en la transformación de los ácidos biliares primarios a secundarios, y cómo estos cambios generan una modificación en la composición de la microbiota intestinal, lo que genera procesos de inflamación crónica, mediado por diferentes vías de señalización, siendo factores etiológicos para un sin número de patologías que comprometen los colangiocitos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Kriaa A, Bourgin M, Potiron A, Mkaouar H, Jablaoui A, Gérard P, et al. Microbial impact on cholesterol and bile acid metabolism: Current status and future prospects. J Lipid Res. 2019;60(2):323-32. doi: 10.1194/jlr.R088989.

Chiang JYL. Bile acids: Regulation of synthesis. J Lipid Res. 2009;50(10):1955-66. doi: 10.1194/jlr.R900010-JLR200.

Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47-64. doi: 10.1007/s00253-016-8006-6.

Chiang JYL. Regulation of bile acid synthesis: Pathways, nuclear receptors, and mechanisms. J Hepatol. 2004;40(3):539-51. doi: 10.1016/j.jhep.2003.11.006.

Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241-59. doi: 10.1194/jlr.R500013-JLR200.

Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159(22):2647-58. doi: 10.1001/archinte.159.22.2647.

Jia E, Liu Z, Pan M, Lu J, Ge Q. Regulation of bile acid metabolism-related signaling pathways by gut microbiota in diseases. J Zhejiang Univ Sci B. 2019;20(10):781-92. doi: 10.1631/jzus.B1900073.

Edwards PA, Kast HR, Anisfeld AM. BAREing it all: The adoption of LXR and FXR and their roles in lipid homeostasis. J Lipid Res. 2002;43(1):2-12.

Kim I, Ahn SH, Inagaki T, Choi M, Ito S, Guo GL, et al. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J Lipid Res. 2007;48(12):2664-72. doi: 10.1194/jlr.M700330-JLR200.

Dossa AY, Escobar O, Golden J, Frey MR, Ford HR, Gayer CP. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol. 2016;310(2):G81-92. doi: 10.1152/ajpgi.00065.2015.

Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 2013;17(2):225-35. doi: 10.1016/j.cmet.2013.01.003.

Hu X, Bonde Y, Eggertsen G, Rudling M. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J Intern Med. 2014;275(1):27-38. doi: 10.1111/joim.12140.

Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. 2009;50(8):1509-20. doi: 10.1194/jlr.R900007-JLR200.

del Campo-Moreno R, Alarcón-Cavero T, D’Auria G, Delgado-Palacio S, Ferrer-Martínez M. Microbiota en la salud humana: técnicas de caracterización y transferencia. Enferm Infecc Microbiol Clin. 2018;36(4):241-5. doi: 10.1016/j.eimc.2017.02.007.

D’Argenio V, Salvatore F. The role of the gut microbiome in the healthy adult status. Clin Chim Acta. 2015;451(A):97-102. doi: 10.1016/j.cca.2015.01.003.

Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature. 2007;449(7164):811-8. doi: 10.1038/nature06245.

Milosevic I, Vujovic A, Barac A, Djelic M, Korac M, Spurnic AR, et al. Gut-liver axis, gut microbiota, and its modulation in the management of liver diseases: A review of the literature. Int J Mol Sci. 2019;20(2):395. doi: 10.3390/ijms20020395.

Kummen M, Vesterhus M, Trøseid M, Moum B, Svardal A, Boberg KM, et al. Elevated trimethylamine-N-oxide (TMAO) is associated with poor prognosis in primary sclerosing cholangitis patients with normal liver function. United European Gastroenterol J. 2017;5(4):532-41. doi: 10.1177/2050640616663453.

O’Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7(7):688-93. doi: 10.1038/sj.embor.7400731.

Quigley EM, Monsour HP. The gut microbiota and the liver: Implications for clinical practice. Expert Rev Gastroenterol Hepatol. 2013;7(8):723-32. doi: 10.1586/17474124.2013.848167.

Hov JR, Karlsen TH. The microbiome in primary sclerosing cholangitis: Current evidence and potential concepts. Semin Liver Dis. 2017;37(4):314-31. doi: 10.1055/s-0037-1608801.

Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761-4. doi: 10.1128/JCM.01228-07.

Philips CA, Augustine P, Yerol PK, Ramesh GN, Ahamed R, Rajesh S, et al. Modulating the intestinal microbiota: Therapeutic opportunities in liver disease. J Clin Transl Hepatol. 2020;8(1):87-99. doi: 10.14218/JCTH.2019.00035.

Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9(12). doi: 10.1371/journal.pbio.1001221.

Gutiérrez-Díaz I, Molinero N, Cabrera A, Rodríguez JI, Margolles A, Delgado S, et al. Diet: Cause or consequence of the microbial profile of cholelithiasis disease? Nutrients. 2018;10(9):1307. doi: 10.3390/nu10091307.

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-63. doi: 10.1038/nature12820.

Di Ciaula A, Garruti G, Baccetto RL, Molina-Molina E, Bonfrate L, Wang DQ-H, et al. Bile acid physiology. Ann Hepatol. 2017;16(1):s4-s14. doi: 10.5604/01.3001.0010.5493.

Begley M, Sleator RD, Gahan CGM, Hill C. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun. 2005;73(2):894-904. doi: 10.1128/IAI.73.2.894-904.2005.

Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103(10):3920-5. doi: 10.1073/pnas.0509592103.

Cahova M, Bratova M, Wohl P. Parenteral nutrition-associated liver disease: The role of the gut microbiota. Nutrients. 2017;9(9):987. doi: 10.3390/nu9090987.

D’Aldebert E, Biyeyeme BMJ, Mergey M, Wendum D, Firrincieli D, Coilly A, et al. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology. 2009;136(4):1435-43. doi: 10.1053/j.gastro.2008.12.040.

Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223-37. doi: 10.1038/s41575-019-0258-z.

Jones BV, Begley M, Hill C, Gahan CGM, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA. 2008;105(36):13580-5. doi: 10.1073/pnas.0804437105.

De Boever P, Wouters R, Verschaeve L, Berckmans P, Schoeters G, Verstraete W. Protective effect of the bile salt hydrolase-active Lactobacillus renteri against bile salt cytotoxicity. Appl Microbiol Biotechnol. 2000;53(6):709-14. doi: 10.1007/s002530000330.

Kho ZY, Lal SK. The human gut microbiome - A potential controller of wellness and disease. Front Microbiol. 2018;9:1835. doi: 10.3389/fmicb.2018.01835.

Maroni L, Ninfole E, Pinto C, Benedetti A, Marzioni M. Gut-liver axis and inflammasome activation in cholangiocyte pathophysiology. Cells. 2020;9(3):736. doi: 10.3390/cells9030736.

Mullish BH, Pechlivanis A, Barker GF, Thursz MR, Marchesi JR, McDonald JAK. Functional microbiomics: Evaluation of gut microbiota-bile acid metabolism interactions in health and disease. Methods. 2018;149:49-58. doi: 10.1016/j.ymeth.2018.04.028.

Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastroenterol Hepatol. 2018;15(2):111-28. doi: 10.1038/nrgastro.2017.119.

Delpino MV, Marchesini MI, Estein SM, Comerci DJ, Cassataro J, Fossati CA, et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect Immun. 2007;75(1):299-305. doi: 10.1128/IAI.00952-06.

Tanaka H, Hashiba H, Kok J, Mierau I. Bile salt hydrolase of Bifidobacterium longum - Biochemical and genetic characterization. Appl Environ Microbiol. 2000;66(6):2502-12. doi: 10.1128/aem.66.6.2502-2512.2000.

Kisiela M, Skarka A, Ebert B, Maser E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: A bioinformatic perspective. J Steroid Biochem Mol Biol. 2012;129(1-2):31-46. doi: 10.1016/j.jsbmb.2011.08.002.

Yoo KS, Lim WT, Choi HS. Biology of cholangiocytes: From bench to bedside. Gut Liver. 2016;10(5):687-98. doi: 10.5009/gnl16033.

Hiramatsu K, Harada K, Tsuneyama K, Sasaki M, Fujita S, Hashimoto T, et al. Amplification and sequence analysis of partial bacterial 16S ribosomal RNA gene in gallbladder bile from patients with primary biliary cirrhosis. J Hepatol. 2000;33(1):9-18. doi: 10.1016/s0168-8278(00)80153-1.

Giudicessi JR, Ackerman MJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Transl Res. 2013;161(1):1-14. doi: 10.1016/j.trsl.2012.08.005.

Maroni L, Haibo B, Ray D, Zhou T, Wan Y, Meng F, et al. Functional and structural features of cholangiocytes in health and disease. Cell Mol Gastroenterol Hepatol. 2015;1(4):368-80. doi: 10.1016/j.jcmgh.2015.05.005.

Giordano DM, Pinto C, Maroni L, Benedetti A, Marzioni M. Inflammation and the gut-liver axis in the pathophysiology of cholangiopathies. Int J Mol Sci. 2018;19(10):3003. doi: 10.3390/ijms19103003.

Dyson JK, Beuers U, Jones DEJ, Lohse AW, Hudson M. Primary sclerosing cholangitis. Lancet. 2018;391(10139):2547-59. doi: 10.1016/S0140-6736(18)30300-3.

Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134(2):577-94. doi: 10.1053/j.gastro.2007.11.059.

Jia X, Lu S, Zeng Z, Liu Q, Dong Z, Chen Y, et al. Characterization of gut microbiota, bile acid metabolism, and cytokines in intrahepatic cholangiocarcinoma. Hepatology. 2020;71(3):893-906. doi: 10.1002/hep.30852.

Mueller T, Beutler C, Picó AH, Shibolet O, Pratt DS, Pascher A, et al. Enhanced innate immune responsiveness and intolerance to intestinal endotoxins in human biliary epithelial cells contributes to chronic cholangitis. Liver Int. 2011;31(10):1574-88. doi: 10.1111/j.1478-3231.2011.02635.x.

Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. 2015;21(8):895-905. doi: 10.1038/nm.3914.

Hov JR, Boberg KM, Taraldsrud E, Vesterhus M, Boyadzhieva M, Solberg IC, et al. Antineutrophil antibodies define clinical and genetic subgroups in primary sclerosing cholangitis. Liver Int. 2017;37(3):458-65. doi: 10.1111/liv.13238.

Hohenester S, de Buy WLM, Paulusma CC, van Vliet SJ, Jefferson DM, Oude Elferink RP, et al. A biliary HCO 3-umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology. 2012;55(1):173-83. doi: 10.1002/hep.24691.

Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341-52. doi: 10.1038/nri.2016.42.

Rossen NG, Fuentes S, van Der Spek MJ, Tijssen JG, Hartman JHA, Duflou A, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149(1):110-118.e4. doi: 10.1053/j.gastro.2015.03.045.

Hov JR, Kummen M. Intestinal microbiota in primary sclerosing cholangitis. Curr Opin Gastroenterol. 2017;33(2):85-92. doi: 10.1097/MOG.0000000000000334.

Färkkilä M, Karvonen AL, Nurmi H, Nuutinen H, Taavitsainen M, Pikkarainen P, et al. Metronidazole and ursodeoxycholic acid for primary sclerosing cholangitis: A randomized placebo-controlled trial. Hepatology. 2004;40(6):1379-86. doi: 10.1002/hep.20457.

Bajer L, Kverka M, Kostovcik M, Macinga P, Dvorak J, Stehlikova Z, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol. 2017;23(25):4548-58. doi: 10.3748/wjg.v23.i25.4548.

Maruo T, Sakamoto M, Ito C, Toda T, Benno Y. Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. Int J Syst Evol Microbiol. 2008;58(5):1221-7. doi: 10.1099/ijs.0.65404-0.

Alvaro D, Invernizzi P, Onori P, Franchitto A, De Santis A, Crosignani A, et al. Estrogen receptors in cholangiocytes and the progression of primary biliary cirrhosis. J Hepatol. 2004;41(6):905-12. doi: 10.1016/j.jhep.2004.08.022.

Sabino J, Vieira-Silva S, Machiels K, Joossens M, Falony G, Ballet V, et al. Primary sclerosing cholangitis is characterised by intestinal dysbiosis independent from IBD. Gut. 2016;65(10):1681-9. doi: 10.1136/gutjnl-2015-311004.

Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016;65(12):2035-44. doi: 10.1136/gutjnl-2016-312729.

Torres J, Bao X, Goel A, Colombel JF, Pekow J, Jabri B, et al. The features of mucosa-associated microbiota in primary sclerosing cholangitis. Aliment Pharmacol Ther. 2016;43(7):790-801. doi: 10.1111/apt.13552.

Vaughn BP, Kaiser T, Staley C, Hamilton MJ, Reich J, Graiziger C, et al. A pilot study of fecal bile acid and microbiota profiles in inflammatory bowel disease and primary sclerosing cholangitis. Clin Exp Gastroenterol. 2019;12:9-19. doi: 10.2147/CEG.S186097.

Tang R, Wei Y, Li Y, Chen W, Chen H, Wang Q, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018;67(3):534-41. doi: 10.1136/gutjnl-2016-313332.

Torres J, Palmela C, Brito H, Bao X, Ruiqi H, Moura-Santos P, et al. The gut microbiota, bile acids and their correlation in primary sclerosing cholangitis associated with inflammatory bowel disease. United European Gastroenterol J. 2018;6(1):112-22. doi: 10.1177/2050640617708953.

Mima K, Nakagawa S, Sawayama H, Ishimoto T, Imai K, Iwatsuki M, et al. The microbiome and hepatobiliary-pancreatic cancers. Cancer Lett. 2017;402:9-15. doi: 10.1016/j.canlet.2017.05.001.

Zhou D, Wang J, Weng M, Zhang Y, Wang X, Gong W, et al. Infections of Helicobacter spp. in the biliary system are associated with biliary tract cancer: A meta-analysis. Eur J Gastroenterol Hepatol. 2013;25(4):447-54. doi: 10.1097/MEG.0b013e32835c0362.

Murphy G, Michel A, Taylor PR, Albanes D, Stephanie J, Virtamo J, et al. Association of seropositivity to Helicobacter species and biliary tract cancer in the ATBC study. 2014;60(6):1963-71. doi: 10.1002/hep.27193.

Takayama S, Takahashi H, Matsuo Y, Okada Y, Takeyama H. Effect of helicobacter bilis infection on human bile duct cancer cells. Dig Dis Sci. 2010;55(7):1905-10. doi: 10.1007/s10620-009-0946-6.

Chng KR, Chan SH, Ng AHQ, Li C, Jusakul A, Bertrand D, et al. Tissue microbiome profiling identifies an enrichment of specific enteric bacteria in Opisthorchis viverrini associated Cholangiocarcinoma. EBioMedicine. 2016;8:195-202. doi: 10.1016/j.ebiom.2016.04.034.

Avilés-Jiménez F, Guitron A, Segura-López F, Méndez-Tenorio A, Iwai S, Hernández-Guerrero A, et al. Microbiota studies in

the bile duct strongly suggest a role for Helicobacter pylori in extrahepatic cholangiocarcinoma. Clin Microbiol Infect. 2016;22(2):178.e11-178.e22. doi: 10.1016/j.cmi.2015.10.008.

Rakic M, Patrlj L, Kopljar M, Klicek R, Kolovrat M, Loncar B, et al. Gallbladder cancer. Hepatobiliary Surg Nutr. 2014;3(5):221-6. doi: 10.3978/j.issn.2304-3881.2014.09.03.

Rustagi T, Dasanu CA. Risk factors for gallbladder cancer and cholangiocarcinoma: Similarities, differences and updates. J Gastrointest Cancer. 2012;43(2):137-47. doi: 10.1007/s12029-011-9284-y.

Koshiol J, Wozniak A, Cook P, Adaniel C, Acevedo J, Azócar L, et al. Salmonella enterica serovar Typhi and gallbladder cancer: A case-control study and meta-analysis. Cancer Med. 2016;5(11):3310-235. doi: 10.1002/cam4.915.

Elsalem L, Jum’ah AA, Alfaqih MA, Aloudat O. The bacterial microbiota of gastrointestinal cancers: Role in cancer pathogenesis and therapeutic perspectives. Clin Exp Gastroenterol. 2020;13:151-85. doi: 10.2147/CEG.S243337.

Ruby T, Mclaughlin L, Gopinath S, Monack D. Salmonella’s long-term relationship with its host. FEMS Microbiol Rev. 2012;36(3):600-15. doi: 10.1111/j.1574-6976.2012.00332.x.

Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu L, Hofland I, et al. Salmonella manipulation of host signaling pathways provokes cellular transformation associated with gallbladder carcinoma. Cell Host Microbe. 2015;17(6):763-74. doi: 10.1016/j.chom.2015.05.002.

Tsuchiya Y, Loza E, Villa-Gomez G, Trujillo CC, Baez S, Asai T, et al. Metagenomics of microbial communities in gallbladder bile from patients with gallbladder cancer or cholelithiasis. Asian Pac J Cancer Prev. 2018;19(4):961-7. doi: 10.22034/APJCP.2018.19.4.961.

Jergens AE, Wilson-Welder JH, Dorn A, Henderson A, Liu Z, Evans RB, et al. Helicobacter bilis triggers persistent immune reactivity to antigens derived from the commensal bacteria in gnotobiotic C3H/HeN mice. Gut. 2007;56(7):934-40. doi: 10.1136/gut.2006.099242.

Publicado

2021-07-18

Cómo citar

Jaillier, A. M., Waitzberg, D., & Becerra Romero, J. A. (2021). Relación entre los ácidos biliares y la microbiota intestinal ¿es posible considerarlo como un factor etiológico en diversas colangiopatías? Una revisión narrativa. Revista De Nutrición Clínica Y Metabolismo, 4(4), 40–55. https://doi.org/10.35454/rncm.v4n4.287

Artículos más leídos del mismo autor/a