Aplicações médico-nutricionais da impedância bioelétrica (BIA) no paciente criticamente doente: uma revisão narrativa
DOI:
https://doi.org/10.35454/rncm.v6n2.478Palavras-chave:
Estado Terminal, Impedância Elétrica, Estado Nutricional, Composição Corporal, Resultados de Cuidados CríticosResumo
Na última década, a avaliação da composição corporal em pacientes críticos tornou-se um elemento chave devido à sua relação com os resultados clínicos. A bioimpedância (BIA) é uma ferramenta disponível para medir a composição corporal, promovida por seu baixo custo, segurança e facilidade de uso em comparação com outros dispositivos. Existem diversos equipamentos BIA no mercado que utilizam diferentes correntes, geralmente 50 kilohertz (kHz). Existem vários parâmetros para conhecer as condições musculares, como impedância, ângulo de fase (PhA) e a relação entre reatância (R) e resistência (Xc). O PhA mede a R e a Xc do músculo, fornecendo informações sobre a quantidade e o estado da membrana celular do músculo esquelético. Tem sido proposto que o PhA seja um marcador prognóstico em pacientes críticos quando seu valor varie entre 4,1° e 6°. A BIA tem grande aplicabilidade em pacientes críticos para identificar o risco nutricional, monitorar uma intervenção e avaliar seu impacto nos desfechos clínicos. A técnica de medição deve ser padronizada e validada para a população específica, o que permitiria a comparação dos resultados entre os estudos. Além disso, a BIA ajuda como um fator prognóstico para identificar os pacientes com alto risco de internação na unidade de terapia intensiva (UTI), permanência prolongada na UTI e hospitalização, ventilação mecânica, deterioração funcional e mortalidade. Conhecer a evidência existente sobre as aplicações da BIA e sua relação com os resultados clínicos em pacientes críticos é essencial para tomada de decisões.
Downloads
Referências
Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Curr Opin Crit Care. 2021;27(4):344-353. doi: 10.1097/MCC.0000000000000840
Lambell KJ, Tatucu-Babet OA, Chapple LA, Gantner D, Ridley EJ. Nutrition therapy in critical illness: a review of the literature for clinicians. Crit Care. 2020;24(1):35. doi: 10.1186/s13054-020-2739-4
Chapple LS, Parry SM, Schaller SJ. Attenuating Muscle Mass Loss in Critical Illness: the Role of Nutrition and Exercise. Curr Osteoporos Rep. 2022;20(5):290-308. doi: 10.1007/s11914-022-00746-7
Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226-43. doi: 10.1016/j.clnu.2004.06.004
Mialich MS, Faccioli Sicchieric JM, Jordao Junior AA. Analysis of Body Composition: A Critical Review of the Use of Bioelectrical Impedance Analysis. International J Clin Nutr. 2014;2(1):1-10. doi: 10.12691/ijcn-2-1-1
Earthman CP. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. JPEN J Parenter Enteral Nutr. 2015;39(7):787-822. doi: 10.1177/0148607115595227
Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015;30(2):180-93. doi: 10.1177/0884533614568155
Mundi MS, Patel JJ, Martindale R. Body Composition Technology: Implications for the ICU. Nutr Clin Pract. 2019;34(1):48-58. doi: 10.1002/ncp.10230
Buter H, Veenstra JA, Koopmans M, Boerma CE. Phase angle is related to outcome after ICU admission; an observational study. Clin Nutr ESPEN. 2018;23:61-66. doi: 10.1016/j.clnesp.2017.12.008
Aristizábal Rivera JC. Conferencia. Bioimpedancia: principios y aplicaciones para el estudio de la composición corporal en adultos. Perspectivas En Nutrición Humana. 2019;167-76. doi: 10.17533/udea.penh.338147
Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27(4):531-4. doi: 10.1152/jappl.1969.27.4.531
Moonen HP, Hermans AJ, Jans I, van Zanten AR. Protein requirements and provision in hospitalized COVID-19 ward and ICU patients: Agreement between calculations based on body weight and height, and measured bioimpedance lean body mass. Clin Nutr ESPEN. 2022;49:474-482. doi: 10.1016/j.clnesp.2022.03.001
González-Correa CH, Caicedo-Eraso JC. Bioelectrical impedance analysis (BIA) equations validation against hydrodensitometry in a Colombian population. J Phys Conf Ser. 2013; 434:012065. doi: 10.1088/1742-6596/434/1/012065
Ramírez VMS, Morales PII, Hernández PJL, Salazar SS. Análisis comparativo del agua extracelular medida por bioimpedanciometría y calculada por balance hídrico en pacientes críticos del Departamento de Medicina Intensiva del Hospital Central Militar. Rev Sanid Milit Mex. 2017;71(5):409-415.
Lee Y, Kwon O, Shin CS, Lee SM. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res. 2015;4(1):32-40. doi:10.7762/cnr.2015.4.1.32
Slobod D, Yao H, Mardini J, Natkaniec J, Correa JA, Jayaraman D, et al. Bioimpedance-measured volume overload predicts longer duration of mechanical ventilation in intensive care unit patients. Can J Anaesth. 2019;66(12):1458-1463. doi: 10.1007/s12630-019-01450-4
Park KH, Shin JH, Hwang JH, Kim SH. Utility of Volume Assessment Using Bioelectrical Impedance Analysis in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Prospective Observational Study. Korean J Crit Care Med. 2017;32(3):256-264. doi: 10.4266/kjccm.2017.00136
Yang SF, Tseng CM, Liu IF, Tsai SH, Kuo WS, Tsao TP. Clinical Significance of Bioimpedance Spectroscopy in Critically Ill Patients. J Intensive Care Med. 2019;34(6):495-502. doi: 10.1177/0885066617702591
Cuthbertson DP, Angeles Valero Zanuy MA, León Sanz ML. Post-shock metabolic response. 1942. Nutr Hosp. 2001;16(5):176-82.
Sharma K, Mogensen KM, Robinson MK. Pathophysiology of Critical Illness and Role of Nutrition. Nutr Clin Pract. 2019;34(1):12-22. doi: 10.1002/ncp.10232
Lew CCH, Yandell R, Fraser RJL, Chua AP, Chong MFF, Miller M. Association Between Malnutrition and Clinical Outcomes in the Intensive Care Unit: A Systematic Review. JPEN J Parenter Enteral Nutr. 2017;41(5):744-758. doi: 10.1177/0148607115625638
Mohialdeen Gubari MI, Hosseinzadeh-Attar MJ, Hosseini M, Mohialdeen FA, Othman H, Hama-Ghareeb KA, et al. Nutritional Status in Intensive Care Unit: A Meta-Analysis and Systematic Review. Galen Med J. 2020;9:e1678. doi: 10.31661/gmj.v9i0.1678
Hill A, Elke G, Weimann A. Nutrition in the Intensive Care Unit-A Narrative Review. Nutrients. 2021;13(8):2851. doi: 10.3390/nu13082851
Sociedad Argentina de Terapia Intensiva (SATI). Soporte Nutricional y Metabolismo en Cuidados Críticos. Ciudad Autónoma de Buenos Aires: Médica Panamericana; 2021.
Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr. 2019;38(2):584-593. doi: 10.1016/j.clnu.2018.07.009
Razzera EL, Marcadenti A, Rovedder SW, Alves FD, Fink JDS, Silva FM. Parameters of Bioelectrical Impedance Are Good Predictors of Nutrition Risk, Length of Stay, and Mortality in Critically Ill Patients: A Prospective Cohort Study. JPEN J Parenter Enteral Nutr. 2020;44(5):849-854. doi: 10.1002/jpen
da Silva Passos LB, Macedo TAA, De-Souza DA. Nutritional state assessed by ultrasonography, but not by bioelectric impedance, predicts 28-day mortality in critically ill patients. Prospective cohort study. Clin Nutr. 2021;40(12):5742-5750. doi: 10.1016/j.clnu.2021.10.015
Jansen AK, Gattermann T, da Silva Fink J, Saldanha MF, Dias Nascimento Rocha C, de Souza Moreira TH, et al. Low standardized phase angle predicts prolonged hospitalization in critically ill patients. Clin Nutr ESPEN. 2019;34:68-72. doi: 10.1016/j.clnesp.2019.08.011
Thibault R, Makhlouf AM, Mulliez A, Cristina Gonzalez M, Kekstas G, Kozjek NR, et al. Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project. Intensive Care Med. 2016;42(9):1445-53. doi: 10.1007/s00134-016-4468-3
Osuna-Padilla IA, Rodríguez-Moguel NC, Rodríguez-Llamazares S, Aguilar-Vargas A, Casas-Aparicio GA, Ríos-Ayala MA, et al. Low phase angle is associated with 60-day mortality in critically ill patients with COVID-19. JPEN J Parenter Enteral Nutr. 2022;46(4):828-835. doi: 10.1002/jpen.2236
Kuchnia A, Earthman C, Teigen L, Cole A, Mourtzakis M, Paris M, et al. Evaluation of Bioelectrical Impedance Analysis in Critically Ill Patients: Results of a Multicenter Prospective Study. JPEN J Parenter Enteral Nutr. 2017;41(7):1131-1138. doi: 10.1177/0148607116651063
Looijaard WGPM, Stapel SN, Dekker IM, Rusticus H, Remmelzwaal S, Girbes ARJ, et al. Identifying critically ill patients with low muscle mass: Agreement between bioelectrical impedance analysis and computed tomography. Clin Nutr. 2020;39(6):1809-1817. doi: 10.1016/j.clnu.2019.07.020
Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854-61. doi: 10.1016/j.clnu.2012.05.008
Baldwin CE, Fetterplace K, Beach L, Kayambu G, Paratz J, Earthman C, et al. Early Detection of Muscle Weakness and Functional Limitations in the Critically Ill: A Retrospective Evaluation of Bioimpedance Spectroscopy. JPEN J Parenter Enteral Nutr. 2020;44(5):837-848. doi: 10.1002/jpen.1719
da Silva TK, Berbigier MC, Rubin Bde A, Moraes RB, Corrêa Souza G, Schweigert Perry ID. Phase angle as a prognostic marker in patients with critical illness. Nutr Clin Pract. 2015;30(2):261-5. doi: 10.1177/0884533615572150
Ko SJ, Cho J, Choi SM, Park YS, Lee CH, Lee SM, et al. Phase Angle and Frailty Are Important Prognostic Factors in Critically Ill Medical Patients: A Prospective Cohort Study. J Nutr Health Aging. 2021;25(2):218-223. doi: 10.1007/s12603-020-1487-0
Stapel SN, Looijaard WGPM, Dekker IM, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM. Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr. 2018;72(7):1019-1025. doi: 10.1038/s41430-018-0167-1
Garlini LM, Alves FD, Ceretta LB, Perry IS, Souza GC, Clausell NO. Phase angle and mortality: a systematic review. Eur J Clin Nutr. 2019;73(4):495-508. doi: 10.1038/s41430-018-0159-1
do Amaral Paes TC, de Oliveira KCC, de Carvalho Padilha P, Peres WAF. Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death. J Crit Care. 2018;44:430-435. doi: 10.1016/j.jcrc.2018.01.006
Moonen HP, Bos AE, Hermans AJ, Stikkelman E, van Zanten FJ, van Zanten AR. Bioelectric impedance body composition and phase angle in relation to 90-day adverse outcome in hospitalized COVID-19 ward and ICU patients: The prospective BIAC-19 study. Clin Nutr ESPEN. 2021;46:185-192. doi: 10.1016/j.clnesp.2021.10.010
Lukaski HC, Kyle UG, Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care. 2017;20(5):330-339. doi: 10.1097/MCO.0000000000000387
Looijaard WGPM, Molinger J, Weijs PJM. Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care. 2018;24(4):241-247. doi: 10.1097/MCC.0000000000000511
Price KL, Earthman CP. Update on body composition tools in clinical settings: computed tomography, ultrasound, and bioimpedance applications for assessment and monitoring. Eur J Clin Nutr. 2019;73(2):187-193. doi: 10.1038/s41430-018-0360-2
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Mateo Londoño Pereira, Fernando José Pereira Paternina, Jeniffer Liliana Jáuregui Durán, Janeth Barbosa Barbosa
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.