Medical and nutritional applications of bioelectric impedance (BIA) in the critically ill patient: A narrative review

Authors

  • Fernando José Pereira Paternina Clínica Las Américas AUNA
  • Mateo Londoño Pereira Clínica Las Américas AUNA
  • Jeniffer Liliana Jáuregui Durán Fundación Hospital San Pedro
  • Janeth Barbosa Barbosa Clínica Las Américas AUNA

DOI:

https://doi.org/10.35454/rncm.v6n2.478

Keywords:

Critical Illness, Electric Impedance, Nutritional Status, Body Composition, Critical Care Outcomes

Abstract

Evaluation of body composition in critically ill patients has become a key component over the last decade due to its relationship with clinical outcomes. Bioelectrical impedance analysis (BIA) is one of the available tools for measuring body composition, promoted for its low cost, safety, and ease of use compared to other devices. There are a variety of BIA devices on the market that use different currents, typically 50 kilohertz (kHz). There are several parameters for assessing muscle conditions, including impedance, phase angle (PhA), and the ratio between reactance (R) and resistance (Xc). PhA measures muscle R and Xc and provides information about the quantity and state of the skeletal muscle cell membrane. A PhA value between 4.1° and 6° has been proposed as a prognostic marker in critically ill patients. The measurement technique must be standardized and validated for the specific population to allow for comparison across studies. BIA has broad applicability in critically ill patients for nutritional risk identification, tracking intervention progress, and assessing impact on clinical outcomes. Additionally, BIA serves as a prognostic factor, as it identifies patients with a high risk of admission to the intensive care unit (ICU), prolonged ICU stay and hospitalization, mechanical ventilation, functional impairment and mortality. Understanding the evidence onBIA applications and its relationship to clinical outcomes in critically ill patients is necessary for decision-making. 

Downloads

Download data is not yet available.

References

Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness. Curr Opin Crit Care. 2021;27(4):344-353. doi: 10.1097/MCC.0000000000000840

Lambell KJ, Tatucu-Babet OA, Chapple LA, Gantner D, Ridley EJ. Nutrition therapy in critical illness: a review of the literature for clinicians. Crit Care. 2020;24(1):35. doi: 10.1186/s13054-020-2739-4

Chapple LS, Parry SM, Schaller SJ. Attenuating Muscle Mass Loss in Critical Illness: the Role of Nutrition and Exercise. Curr Osteoporos Rep. 2022;20(5):290-308. doi: 10.1007/s11914-022-00746-7

Kyle UG, Bosaeus I, De Lorenzo AD, Deurenberg P, Elia M, Gómez JM, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226-43. doi: 10.1016/j.clnu.2004.06.004

Mialich MS, Faccioli Sicchieric JM, Jordao Junior AA. Analysis of Body Composition: A Critical Review of the Use of Bioelectrical Impedance Analysis. International J Clin Nutr. 2014;2(1):1-10. doi: 10.12691/ijcn-2-1-1

Earthman CP. Body Composition Tools for Assessment of Adult Malnutrition at the Bedside: A Tutorial on Research Considerations and Clinical Applications. JPEN J Parenter Enteral Nutr. 2015;39(7):787-822. doi: 10.1177/0148607115595227

Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: current applications, limitations, and opportunities. Nutr Clin Pract. 2015;30(2):180-93. doi: 10.1177/0884533614568155

Mundi MS, Patel JJ, Martindale R. Body Composition Technology: Implications for the ICU. Nutr Clin Pract. 2019;34(1):48-58. doi: 10.1002/ncp.10230

Buter H, Veenstra JA, Koopmans M, Boerma CE. Phase angle is related to outcome after ICU admission; an observational study. Clin Nutr ESPEN. 2018;23:61-66. doi: 10.1016/j.clnesp.2017.12.008

Aristizábal Rivera JC. Conferencia. Bioimpedancia: principios y aplicaciones para el estudio de la composición corporal en adultos. Perspectivas En Nutrición Humana. 2019;167-76. doi: 10.17533/udea.penh.338147

Hoffer EC, Meador CK, Simpson DC. Correlation of whole-body impedance with total body water volume. J Appl Physiol. 1969;27(4):531-4. doi: 10.1152/jappl.1969.27.4.531

Moonen HP, Hermans AJ, Jans I, van Zanten AR. Protein requirements and provision in hospitalized COVID-19 ward and ICU patients: Agreement between calculations based on body weight and height, and measured bioimpedance lean body mass. Clin Nutr ESPEN. 2022;49:474-482. doi: 10.1016/j.clnesp.2022.03.001

González-Correa CH, Caicedo-Eraso JC. Bioelectrical impedance analysis (BIA) equations validation against hydrodensitometry in a Colombian population. J Phys Conf Ser. 2013; 434:012065. doi: 10.1088/1742-6596/434/1/012065

Ramírez VMS, Morales PII, Hernández PJL, Salazar SS. Análisis comparativo del agua extracelular medida por bioimpedanciometría y calculada por balance hídrico en pacientes críticos del Departamento de Medicina Intensiva del Hospital Central Militar. Rev Sanid Milit Mex. 2017;71(5):409-415.

Lee Y, Kwon O, Shin CS, Lee SM. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin Nutr Res. 2015;4(1):32-40. doi:10.7762/cnr.2015.4.1.32

Slobod D, Yao H, Mardini J, Natkaniec J, Correa JA, Jayaraman D, et al. Bioimpedance-measured volume overload predicts longer duration of mechanical ventilation in intensive care unit patients. Can J Anaesth. 2019;66(12):1458-1463. doi: 10.1007/s12630-019-01450-4

Park KH, Shin JH, Hwang JH, Kim SH. Utility of Volume Assessment Using Bioelectrical Impedance Analysis in Critically Ill Patients Receiving Continuous Renal Replacement Therapy: A Prospective Observational Study. Korean J Crit Care Med. 2017;32(3):256-264. doi: 10.4266/kjccm.2017.00136

Yang SF, Tseng CM, Liu IF, Tsai SH, Kuo WS, Tsao TP. Clinical Significance of Bioimpedance Spectroscopy in Critically Ill Patients. J Intensive Care Med. 2019;34(6):495-502. doi: 10.1177/0885066617702591

Cuthbertson DP, Angeles Valero Zanuy MA, León Sanz ML. Post-shock metabolic response. 1942. Nutr Hosp. 2001;16(5):176-82.

Sharma K, Mogensen KM, Robinson MK. Pathophysiology of Critical Illness and Role of Nutrition. Nutr Clin Pract. 2019;34(1):12-22. doi: 10.1002/ncp.10232

Lew CCH, Yandell R, Fraser RJL, Chua AP, Chong MFF, Miller M. Association Between Malnutrition and Clinical Outcomes in the Intensive Care Unit: A Systematic Review. JPEN J Parenter Enteral Nutr. 2017;41(5):744-758. doi: 10.1177/0148607115625638

Mohialdeen Gubari MI, Hosseinzadeh-Attar MJ, Hosseini M, Mohialdeen FA, Othman H, Hama-Ghareeb KA, et al. Nutritional Status in Intensive Care Unit: A Meta-Analysis and Systematic Review. Galen Med J. 2020;9:e1678. doi: 10.31661/gmj.v9i0.1678

Hill A, Elke G, Weimann A. Nutrition in the Intensive Care Unit-A Narrative Review. Nutrients. 2021;13(8):2851. doi: 10.3390/nu13082851

Sociedad Argentina de Terapia Intensiva (SATI). Soporte Nutricional y Metabolismo en Cuidados Críticos. Ciudad Autónoma de Buenos Aires: Médica Panamericana; 2021.

Berger MM, Reintam-Blaser A, Calder PC, Casaer M, Hiesmayr MJ, Mayer K, et al. Monitoring nutrition in the ICU. Clin Nutr. 2019;38(2):584-593. doi: 10.1016/j.clnu.2018.07.009

Razzera EL, Marcadenti A, Rovedder SW, Alves FD, Fink JDS, Silva FM. Parameters of Bioelectrical Impedance Are Good Predictors of Nutrition Risk, Length of Stay, and Mortality in Critically Ill Patients: A Prospective Cohort Study. JPEN J Parenter Enteral Nutr. 2020;44(5):849-854. doi: 10.1002/jpen

da Silva Passos LB, Macedo TAA, De-Souza DA. Nutritional state assessed by ultrasonography, but not by bioelectric impedance, predicts 28-day mortality in critically ill patients. Prospective cohort study. Clin Nutr. 2021;40(12):5742-5750. doi: 10.1016/j.clnu.2021.10.015

Jansen AK, Gattermann T, da Silva Fink J, Saldanha MF, Dias Nascimento Rocha C, de Souza Moreira TH, et al. Low standardized phase angle predicts prolonged hospitalization in critically ill patients. Clin Nutr ESPEN. 2019;34:68-72. doi: 10.1016/j.clnesp.2019.08.011

Thibault R, Makhlouf AM, Mulliez A, Cristina Gonzalez M, Kekstas G, Kozjek NR, et al. Fat-free mass at admission predicts 28-day mortality in intensive care unit patients: the international prospective observational study Phase Angle Project. Intensive Care Med. 2016;42(9):1445-53. doi: 10.1007/s00134-016-4468-3

Osuna-Padilla IA, Rodríguez-Moguel NC, Rodríguez-Llamazares S, Aguilar-Vargas A, Casas-Aparicio GA, Ríos-Ayala MA, et al. Low phase angle is associated with 60-day mortality in critically ill patients with COVID-19. JPEN J Parenter Enteral Nutr. 2022;46(4):828-835. doi: 10.1002/jpen.2236

Kuchnia A, Earthman C, Teigen L, Cole A, Mourtzakis M, Paris M, et al. Evaluation of Bioelectrical Impedance Analysis in Critically Ill Patients: Results of a Multicenter Prospective Study. JPEN J Parenter Enteral Nutr. 2017;41(7):1131-1138. doi: 10.1177/0148607116651063

Looijaard WGPM, Stapel SN, Dekker IM, Rusticus H, Remmelzwaal S, Girbes ARJ, et al. Identifying critically ill patients with low muscle mass: Agreement between bioelectrical impedance analysis and computed tomography. Clin Nutr. 2020;39(6):1809-1817. doi: 10.1016/j.clnu.2019.07.020

Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854-61. doi: 10.1016/j.clnu.2012.05.008

Baldwin CE, Fetterplace K, Beach L, Kayambu G, Paratz J, Earthman C, et al. Early Detection of Muscle Weakness and Functional Limitations in the Critically Ill: A Retrospective Evaluation of Bioimpedance Spectroscopy. JPEN J Parenter Enteral Nutr. 2020;44(5):837-848. doi: 10.1002/jpen.1719

da Silva TK, Berbigier MC, Rubin Bde A, Moraes RB, Corrêa Souza G, Schweigert Perry ID. Phase angle as a prognostic marker in patients with critical illness. Nutr Clin Pract. 2015;30(2):261-5. doi: 10.1177/0884533615572150

Ko SJ, Cho J, Choi SM, Park YS, Lee CH, Lee SM, et al. Phase Angle and Frailty Are Important Prognostic Factors in Critically Ill Medical Patients: A Prospective Cohort Study. J Nutr Health Aging. 2021;25(2):218-223. doi: 10.1007/s12603-020-1487-0

Stapel SN, Looijaard WGPM, Dekker IM, Girbes ARJ, Weijs PJM, Oudemans-van Straaten HM. Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur J Clin Nutr. 2018;72(7):1019-1025. doi: 10.1038/s41430-018-0167-1

Garlini LM, Alves FD, Ceretta LB, Perry IS, Souza GC, Clausell NO. Phase angle and mortality: a systematic review. Eur J Clin Nutr. 2019;73(4):495-508. doi: 10.1038/s41430-018-0159-1

do Amaral Paes TC, de Oliveira KCC, de Carvalho Padilha P, Peres WAF. Phase angle assessment in critically ill cancer patients: Relationship with the nutritional status, prognostic factors and death. J Crit Care. 2018;44:430-435. doi: 10.1016/j.jcrc.2018.01.006

Moonen HP, Bos AE, Hermans AJ, Stikkelman E, van Zanten FJ, van Zanten AR. Bioelectric impedance body composition and phase angle in relation to 90-day adverse outcome in hospitalized COVID-19 ward and ICU patients: The prospective BIAC-19 study. Clin Nutr ESPEN. 2021;46:185-192. doi: 10.1016/j.clnesp.2021.10.010

Lukaski HC, Kyle UG, Kondrup J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: phase angle and impedance ratio. Curr Opin Clin Nutr Metab Care. 2017;20(5):330-339. doi: 10.1097/MCO.0000000000000387

Looijaard WGPM, Molinger J, Weijs PJM. Measuring and monitoring lean body mass in critical illness. Curr Opin Crit Care. 2018;24(4):241-247. doi: 10.1097/MCC.0000000000000511

Price KL, Earthman CP. Update on body composition tools in clinical settings: computed tomography, ultrasound, and bioimpedance applications for assessment and monitoring. Eur J Clin Nutr. 2019;73(2):187-193. doi: 10.1038/s41430-018-0360-2

Published

2023-05-24

How to Cite

Pereira Paternina, F. J., Londoño Pereira, M., Jáuregui Durán, J. L. ., & Barbosa Barbosa, J. (2023). Medical and nutritional applications of bioelectric impedance (BIA) in the critically ill patient: A narrative review. Journal Clinical Nutrition and Metabolism, 6(2), 138–154. https://doi.org/10.35454/rncm.v6n2.478

Most read articles by the same author(s)