Influence of Nutrients and Metabolic Diseases over Memory
Keywords:
Cognitive impairment, memory, cognitive function, nutrients, metabolic diseaseAbstract
The influence of nutrition and metabolic diseases, on other diseases and health deterioration has been relevant during the last years. This awakened the interest to investigate a branch of little attention in nutrition "neuroscience", in search of knowing the influence of different nutrients and metabolic diseases on memory. The objetive was to investigate the influence of vitamin A, D, B9 and B12; iron, magnesium, zinc, polyunsaturated fatty acids (mainly DHA), caffeine and metabolic diseases such as obesity, diabetes, hypertension and dyslipidemia, on memory.
An exhaustive search was carried out in databases such as PubMed, Scopus, EBSCO, SciELO, among others. Only clinical and observational studies were included.
In clinical trials it was found a greater positive influence on micronutrients such as Vitamin A, B9 and B12; and minerals such as Magnesium. In addition, observational studies showed positive association between metabolic diseases and the development of cognitive impairment.
Vitamins and minerals seem to have a greater influence on memory, compared to caffeine and polyunsaturated fatty acids (DHA). Metabolic diseases are related to cognitive impairment.
Downloads
References
References
Cousins JN, Fernández G. The impact of sleep deprivation on declarative memory. 2019. [citado el 16 de julio de 2024]; p. 27–53. doi: 10.1016/bs.pbr.2019.01.007
Zhang J, Yetton B, Whitehurst LN, Naji M, Mednick SC. The effect of zolpidem on memory consolidation over a night of sleep. Sleep. 2020 [citado el 16 de julio de 2024]; 12;43(11). doi: 10.1093/sleep/zsaa084
Gutema BT, Levecke B, Sorrie MB, Megersa ND, Zewdie TH, Yesera GE, et al. Effectiveness of intermittent iron and high-dose vitamin A supplementation on cognitive development of school children in southern Ethiopia: a randomized placebo-controlled trial. The American Journal of Clinical Nutrition. 2024 [citado el 16 de julio de 2024]; 119(2):470–84. doi: 10.1016/j.ajcnut.2023.11.005
Bassouni R, Soliman M, Hussein LA, Monir Z, Abd El-Meged AA. Development and evaluating the biopotency of ready to eat liver meat balls in fighting anaemia and vitamin A deficiency, improving selected nutritional biochemical indicators and promoting the cognitive function among mildly anaemic Egyptian children aged 3–9 years. Public Health Nutrition. 2022 [citado el 16 de julio de 2024]; 22;25(11):3182–94. doi: 10.1017/S1368980022000970
Ma F, Zhou X, Li Q, Zhao J, Song A, An P, et al. Effects of Folic Acid and Vitamin B12, Alone and in Combination on Cognitive Function and Inflammatory Factors in the Elderly with Mild Cognitive Impairment: A Single-blind Experimental Design. Current Alzheimer Research. 2019 [citado el 16 de julio de 2024]; 4;16(7):622–32. doi: 10.2174/1567205016666190725144629
Zhou L, Bai X, Huang J, Tan Y, Yang Q. Vitamin B12 supplementation improves cognitive function in middle aged and elderly patients with cognitive impairment. Nutrición Hospitalaria. 2023; doi: 10.20960/nh.04394
Domínguez-López I, Casas R, Chiva-Blanch G, Martínez-González MÁ, Fitó M, Ros E, et al. Serum vitamin B12 concentration is associated with improved memory in older individuals with higher adherence to the Mediterranean diet. Clinical Nutrition. 2023 [citado el 16 de julio de 2024]; 42(12):2562–8. doi: 10.1016/j.clnu.2023.10.025
Jia J, Hu J, Huo X, Miao R, Zhang Y, Ma F. Effects of vitamin D supplementation on cognitive function and blood Aβ-related biomarkers in older adults with Alzheimer’s disease: a randomised, double-blind, placebo-controlled trial. Journal of Neurology, Neurosurgery & Psychiatry. 2019 [citado el 16 de julio de 2024]; 11;jnnp-2018-320199. doi: 10.1136/jnnp-2018-320199
Jorde R, Kubiak J, Svartberg J, Fuskevåg OM, Figenschau Y, Martinaityte I, et al. Vitamin D supplementation has no effect on cognitive performance after four months in mid-aged and older subjects. Journal of the Neurological Sciences. 2019 [citado el 16 de julio de 2024]; Jan;396:165–71. doi: 10.1016/j.jns.2018.11.020
Montero-Odasso M, Zou G, Speechley M, Almeida QJ, Liu-Ambrose T, Middleton LE, et al. Effects of Exercise Alone or Combined With Cognitive Training and Vitamin D Supplementation to Improve Cognition in Adults With Mild Cognitive Impairment. JAMA Network Open. 2023 [citado el 16 de julio de 2024]; Jul 20;6(7):e2324465. doi: 10.1001/jamanetworkopen.2023.24465
Yang T, Wang H, Xiong Y, Chen C, Duan K, Jia J, et al. Vitamin D Supplementation Improves Cognitive Function Through Reducing Oxidative Stress Regulated by Telomere Length in Older Adults with Mild Cognitive Impairment: A 12-Month Randomized Controlled Trial. Journal of Alzheimer’s Disease. 2020 [citado el 16 de julio de 2024]; Dec 8;78(4):1509–18. doi: 10.3233/JAD-200926
Gingoyon A, Borkhoff CM, Koroshegyi C, Mamak E, Birken CS, Maguire JL, et al. Chronic Iron Deficiency and Cognitive Function in Early Childhood. Pediatrics. 2022 [citado el 16 de julio de 2024]; Dec 1;150(6). doi: 10.1542/peds.2021-055926
Barnett AL, Wenger MJ, Yunus FM, Jalal C, DellaValle DM. The Effect of Iron-Fortified Lentils on Blood and Cognitive Status among Adolescent Girls in Bangladesh. Nutrients. 2023 [citado el 16 de julio de 2024]; Dec 2;15(23):5001. doi: 10.3390/nu15235001
Pasricha SR, Hasan MI, Braat S, Larson LM, Tipu SMMU, Hossain SJ, et al. Benefits and Risks of Iron Interventions in Infants in Rural Bangladesh. New England Journal of Medicine. 2021 [citado el 16 de julio de 2024]; Sep 9;385(11):982–95. doi: 10.1056/NEJMoa2034187
Wenger MJ, Murray Kolb LE, Scott SP, Boy E, Haas JD. Modeling relationships between iron status, behavior, and brain electrophysiology: evidence from a randomized study involving a biofortified grain in Indian adolescents. BMC Public Health. 2022 [citado el 16 de julio de 2024]; Jul 6;22(1):1299. doi: 10.1186/s12889-022-13612-z
Zhang C, Hu Q, Li S, Dai F, Qian W, Hewlings S, et al. A Magtein®, Magnesium L-Threonate, -Based Formula Improves Brain Cognitive Functions in Healthy Chinese Adults. Nutrients. 2022 [citado el 16 de julio de 2024]; Dec 8;14(24):5235. doi : 10.3390/nu14245235
Zhu X, Borenstein AR, Zheng Y, Zhang W, Seidner DL, Ness R, et al. Ca:Mg Ratio, APOE Cytosine Modifications, and Cognitive Function: Results from a Randomized Trial. Journal of Alzheimer’s Disease. 2020 [citado el 16 de julio de 2024]; May 5;75(1):85–98. doi: 10.3233/JAD-191223
Huenges Wajer IMC, Dorhout Mees SM, van den Bergh WM, Algra A, Visser‐Meily JMA, Rinkel GJE, et al. Effect of magnesium on cognition after aneurysmal subarachnoid haemorrhage in a randomized trial. European Journal of Neurology. 2018 [citado el 16 de julio de 2024]; Dec 3;25(12):1486–9. doi: 10.3233/JAD-191223
de Vargas L da S, Jantsch J, Fontoura JR, Dorneles GP, Peres A, Guedes RP. Effects of Zinc Supplementation on Inflammatory and Cognitive Parameters in Middle-Aged Women with Overweight or Obesity. Nutrients. 2023 [citado el 16 de julio de 2024]; Oct 17;15(20):4396. doi: 10.3390/nu15204396
Manippa V, Lupo R, Tommasi L, Brancucci A. Italian breakfast in mind: The effect of caffeine, carbohydrate and protein on physiological state, mood and cognitive performance. Physiology & Behavior. 2021 [citado el 16 de julio de 2024]; May;234:113371. doi: 10.1016/j.physbeh.2021.113371
Zabelina DL, Silvia PJ. Percolating ideas: The effects of caffeine on creative thinking and problem solving. Consciousness and Cognition. 2020 [citado el 16 de julio de 2024]; Mar;79:102899. doi: 10.1016/j.concog.2020.102899
Lin YS, Weibel J, Landolt HP, Santini F, Slawik H, Borgwardt S, et al. Brain activity during a working memory task after daily caffeine intake and caffeine withdrawal: a randomized double-blind placebo-controlled trial. Scientific Reports. 2023 [citado el 16 de julio de 2024]; Jan 18;13(1):1002. doi: 10.1038/s41598-022-26808-5
Berg J, Cooper J, Salonikas C, Seyedsadjadi N, Grant R. Acute caffeine intake in humans reduces post exercise performance in learning and memory. Human Psychopharmacology: Clinical and Experimental. 2021 [citado el 16 de julio de 2024];May 25;36(3). doi: 10.1002/hup.2775
Ajjimaporn A, Noppongsakit P, Ramyarangsi P, Siripornpanich V, Chaunchaiyakul R. A low- dose of caffeine suppresses EEG alpha power and improves working memory in healthy University males. Physiology & Behavior. 2022 [citado el 16 de julio de 2024]; Nov;256:113955. doi: 10.1016/j.physbeh.2022.113955
Franceschini S, Lulli M, Bertoni S, Gori S, Angrilli A, Mancarella M, et al. Caffeine improves text reading and global perception. Journal of Psychopharmacology. 2020 [citado el 16 de julio de 2024]; Mar 3;34(3):315–25. doi: 10.1177/0269881119878178
Benson S, Tiplady B, Scholey A. Attentional and working memory performance following alcohol and energy drink: A randomised, double-blind, placebo-controlled, factorial design laboratory study. PLOS ONE. 2019 [citado el 16 de julio de 2024]; Jan 9;14(1):e0209239. doi: 10.1371/journal.pone.0209239
Power R, Nolan JM, Prado-Cabrero A, Roche W, Coen R, Power T, et al. Omega-3 fatty acid, carotenoid and vitamin E supplementation improves working memory in older adults: A randomised clinical trial. Clinical Nutrition. 2022 [citado el 16 de julio de 2024]; Feb;41(2):405–14. doi: 10.1016/j.clnu.2021.12.004
Sueyasu T, Yasumoto K, Tokuda H, Kaneda Y, Obata H, Rogi T, et al. Effects of Long-Chain Polyunsaturated Fatty Acids in Combination with Lutein and Zeaxanthin on Episodic Memory in Healthy Older Adults. Nutrients. 2023 [citado el 16 de julio de 2024]; Jun 21;15(13):2825. doi: 10.3390/nu15132825
Maltais M, Lorrain D, Léveillé P, Viens I, Vachon A, Houeto A, et al. Long-chain Omega-3 fatty acids supplementation and cognitive performance throughout adulthood: A 6-month randomized controlled trial. Prostaglandins, Leukotrienes and Essential Fatty Acids. 2022 [citado el 16 de julio de 2024]; Mar;178:102415. doi: 10.1016/j.plefa.2022.102415
Patan MJ, Kennedy DO, Husberg C, Hustvedt SO, Calder PC, Khan J, et al. Supplementation with oil rich in eicosapentaenoic acid, but not in docosahexaenoic acid, improves global cognitive function in healthy, young adults: results from randomized controlled trials. The American Journal of Clinical Nutrition. 2021 [citado el 16 de julio de 2024]; Sep;114(3):914–24. doi: 10.1093/ajcn/nqab174
Malik A, Ramadan A, Vemuri B, Siddiq W, Amangurbanova M, Ali A, et al. ω-3 Ethyl ester results in better cognitive function at 12 and 30 months than control in cognitively healthy subjects with coronary artery disease: a secondary analysis of a randomized clinical trial. The American Journal of Clinical Nutrition. 2021 [citado el 16 de julio de 2024]; May;113(5):1168–76. doi: 10.1093/ajcn/nqaa420
Leckie RL, Lehman DE, Gianaros PJ, Erickson KI, Sereika SM, Kuan DCH, et al. The effects of omega-3 fatty acids on neuropsychological functioning and brain morphology in mid-life adults: a randomized clinical trial. Psychological Medicine. 2020 [citado el 16 de julio de 2024]; Oct 4;50(14):2425–34. doi: 10.1017/S0033291719002617
Teisen MN, Vuholm S, Niclasen J, Aristizabal-Henao JJ, Stark KD, Geertsen SS, et al. Effects of oily fish intake on cognitive and socioemotional function in healthy 8–9-year-old children: the FiSK Junior randomized trial. The American Journal of Clinical Nutrition. 2020 [citado el 16 de julio de 2024]; Jul;112(1):74–83. doi: 10.1093/ajcn/nqaa050
Moran C, Scotto di Palumbo A, Bramham J, Moran A, Rooney B, de Vito G, et al. Effects of a six-month multi-ingredient nutrition supplement intervention of omega-3 polyunsaturated fatty acids, vitamin d, resveratrol, and whey protein on cognitive function in older adults: a randomised, double-blind, controlled trial. The Journal Of Prevention of Alzheimer’s Disease. 2018 [citado el 16 de julio de 2024]; 1–9. doi: 10.14283/jpad.2018.11
Kuszewski JC, Howe PRC, Wong RHX. Evaluation of Cognitive Performance following Fish-Oil and Curcumin Supplementation in Middle-Aged and Older Adults with Overweight or Obesity. The Journal of Nutrition. 2020 Dec;150(12):3190–9. doi: 10.1093/jn/nxaa299
Šuput Omladič J, Slana Ozimič A, Vovk A, Šuput D, Repovš G, Dovc K, et al. Acute Hyperglycemia and Spatial Working Memory in Adolescents With Type 1 Diabetes. Diabetes Care. 2020 [citado el 16 de julio de 2024]; Aug 1;43(8):1941–4. doi: 10.2337/dc20-0171
Backeström A, Papadopoulos K, Eriksson S, Olsson T, Andersson M, Blennow K, et al. Acute hyperglycaemia leads to altered frontal lobe brain activity and reduced working memory in type 2 diabetes. PLOS ONE. 2021 [citado el 16 de julio de 2024]; Mar 19;16(3):e0247753. doi: 10.1371/journal.pone.0247753
Nagar SD, Pemu P, Qian J, Boerwinkle E, Cicek M, Clark CR, et al. Investigation of hypertension and type 2 diabetes as risk factors for dementia in the All of Us cohort. Scientific Reports. 2022 [citado el 16 de julio de 2024]; Nov 17;12(1):19797. doi: 10.1038/s41598-022-23353-z
Thomassen JQ, Tolstrup JS, Benn M, Frikke-Schmidt R. Type-2 diabetes and risk of dementia: observational and Mendelian randomisation studies in 1 million individuals. Epidemiology and Psychiatric Sciences. 2020 [citado el 16 de julio de 2024]; Apr 24;29:e118. doi: 10.1017/S2045796020000347
Kim YG, Park DG, Moon SY, Jeon JY, Kim HJ, Kim DJ, et al. Hypoglycemia and Dementia Risk in Older Patients with Type 2 Diabetes Mellitus: A Propensity-Score Matched Analysis of a Population-Based Cohort Study. Diabetes & Metabolism Journal. 2020 [citado el 16 de julio de 2024]; 44(1):125. doi: 10.4093/dmj.2018.0260
Morys F, Dadar M, Dagher A. Association Between Midlife Obesity and Its Metabolic Consequences, Cerebrovascular Disease, and Cognitive Decline. The Journal of Clinical Endocrinology & Metabolism. 2021 Sep 27;106(10):e4260–74. doi: 10.1210/clinem/dgab135
Nordestgaard LT, Christoffersen M, Afzal S, Nordestgaard BG, Tybjærg-Hansen A, Frikke-Schmidt R. Triglycerides as a Shared Risk Factor between Dementia and Atherosclerotic Cardiovascular Disease: A Study of 125 727 Individuals. Clinical Chemistry. 2021 [citado el 16 de julio de 2024]; Jan 8;67(1):245–55. doi: 10.1093/clinchem/hvaa269
den Brok MGHE, Eggink E, Hoevenaar-Blom MP, van Gool WA, Moll van Charante EP, Richard E, et al. Low Values for Blood Pressure, BMI, and Non-HDL Cholesterol and the Risk of Late-Life Dementia. Neurology. 2022 [citado el 16 de julio de 2024]; Oct 11;99(15). doi: 10.1212/WNL.0000000000200954
Arrieta Antón E, Baz Rodríguez PG. Estudio DECOG: deterioro cognitivo en el paciente con riesgo cardiovascular. Medicina de Familia SEMERGEN. 2021 [citado el 16 de julio de 2024]; Apr;47(3):174–80. doi: 10.1016/j.semerg.2021.01.009
Morys F, Potvin O, Zeighami Y, Vogel J, Lamontagne-Caron R, Duchesne S, et al. Obesity-Associated Neurodegeneration Pattern Mimics Alzheimer’s Disease in an Observational Cohort Study. Journal of Alzheimer’s Disease. 2023 [citado el 16 de julio de 2024]; Jan 31;91(3):1059–71. doi: 10.3233/JAD-220535
Dekkers IA, Jansen PR, Lamb HJ. Obesity, Brain Volume, and White Matter Microstructure at MRI: A Cross-sectional UK Biobank Study. Radiology. 2019[citado el 16 de julio de 2024]; Jun;291(3):763–71. doi: 10.1148/radiol.2019181012
Hou Q, Guan Y, Yu W, Liu X, Wu L, Xiao M, et al.
Associations between obesity and cognitive impairment in the Chinese elderly: an observational study
. Clinical Interventions in Aging. 2019 [citado el 16 de julio de 2024]; Feb;Volume 14:367–73. doi: 10.2147/CIA.S192050Dominguez LJ, Barbagallo M, Muñoz-Garcia M, Godos J, Martinez-Gonzalez MA. Dietary Patterns and Cognitive Decline: key features for prevention. Curr Pharm Des. 2019 [citado el 16 de julio de 2024];25(22):2428-2442. doi: 10.2174/1381612825666190722110458.
Pérez Lizaur A B, Marván Laborde L. Manual de dietas normales y terapéuticas. Los alimentos en la salud y la enfermedad. 5ª edición. Ediciones Porrúa. México, 2022 [citado el 16 de julio de 2024].
Dominguez LJ, Veronese N, Vernuccio L, Catanese G, Inzerillo F, Salemi G, Barbagallo M. Nutrition, Physical Activity, and Other Lifestyle Factors in the Prevention of Cognitive Decline and Dementia. Nutrients. 2021 [citado el 16 de julio de 2024]; 15;13(11):4080. doi: 10.3390/nu13114080. PMID: 34836334; PMCID: PMC8624903.
Jacobs, D.R., Jr.; Orlich, M.J. Diet pattern and longevity: Do simple rules suffice? Am. J. Clin. Nutr. 2014, [citado el 16 de julio de 2024]; 100 (Suppl. 1), 313S–319S.
Gil Martínez V, Avedillo Salas A, Santander Ballestín S. Vitamin Supplementation and Dementia: A Systematic Review. Nutrients. 2022 [citado el 16 de julio de 2024]; 28;14(5):1033. doi: 10.3390/nu14051033.
Liang, J.-H.; Lu, L.; Li, J.-Y.; Qu, X.-Y.; Li, J.; et al. Contributions of Modifiable Risk Factors to Dementia Incidence: A Bayesian Network Analysis. J. Am. Med Dir. Assoc. 2020, [citado el 16 de julio de 2024]; 21, 1592–1599.e13.
Selman A, Burns S, Reddy AP, Culberson J, Reddy PH. The Role of Obesity and Diabetes in Dementia. Int J Mol Sci. 2022 [citado el 16 de julio de 2024]; 17;23(16):9267. doi: 10.3390/ijms23169267.
Shi Y, Lin F, Li Y, Wang Y, Chen X, Meng F, Ye Q, Cai G. Association of pro-inflammatory diet with increased risk of all-cause dementia and Alzheimer's dementia: a prospective study of 166,377 UK Biobank participants. BMC Med. 2023 [citado el 16 de julio de 2024]; 21;21(1):266. doi: 10.1186/s12916-023-02940-5.
Khan, S.H.; Hegde, V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer’s Disease. J. Pers. Med. 2020 [citado el 16 de julio de 2024]; 22;10(2):42. doi: 10.3390/jpm10020042.
Kopp, W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes, Metab. Syndr. Obes. Targets Ther. 2019, [citado el 16 de julio de 2024]; 24;12:2221-2236. doi: 10.2147/DMSO.S216791.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fernando Emmanuel Garcini Enriquez, Claudia Nelly Orozco González

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.