Clinical and immunological implications of micronutrients during HIV infection

Authors

  • Iván A. Osuna- Padilla https://orcid.org/0000-0002-3490-3414
  • Nadia Carolina Rodríguez Moguel Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias
  • Adriana Aguilar Vargas Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias
  • Olivia Briceño Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias

DOI:

https://doi.org/10.35454/rncm.v3n2.166

Keywords:

HIV, Nutritional Therapy, Micronutrients, Inflammation

Abstract

During HIV infection there is an alteration in the functions of the immune system and chronic inflammation that cannot be resolved with antiretroviral treatment (ART). Moreover, a high prevalence of micronutrient deficiencies has been reported in the HIV+ population due to an increase in their demand and excretion.    Such chronic inflammation and micronutrient deficiency is associated with comorbidities not linked to the acquired immunodeficiency syndrome (AIDS) such as high blood pressure, cardiovascular disease, metabolic syndrome, cancer, and osteoporosis. The development of strategies aimed at regulating the inflammation and chronic activation present in HIV+ patients receiving ART to improve their quality of life and decrease the prevalence of comorbidities. A promising option is nutritional intervention through supplementaltion of micronutrients that have shown to have a regulatory effect on inflammation and immune response and which could represent a safe and cost-effective option.

Downloads

Download data is not yet available.

Author Biographies

Iván A. Osuna- Padilla

Licenciado en Nutrición, Universidad Autónoma de Durango. Maestro en Nutrición Clínica, Instituto Nacional de Salud Pública. Doctor en Investigación en Medicina, Instituto Politécnico Nacional. Nutriólogo Certificado, Colegio Mexicano de Nutriólogos. Nutriólogo clínico. Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Ciudad de México.

Nadia Carolina Rodríguez Moguel, Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias

Licenciada en Nutrición, Maestra en Ciencias.

Diplomado en Soporte nutricional

Diplomado en Nutrición Clínica Perinatal

Adriana Aguilar Vargas, Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias

Licenciada en Nutrición y Ciencias de los Alimentos

Maestra en Ciencias de la Nutrición

 

Olivia Briceño, Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias

Licenciada Químico Farmaceutico Biólogo, UNAM

Maestra en Ciencias Biológicas, UNAM

Doctora en Inmunología, Pasteur Institute

References

Serrão R, Piñero C, Velez J, Coutinho D, Maltez F, Lino S, et al. Non-AIDS-related comorbidities in people living with HIV-1 aged 50 years and older: The AGING POSITIVE study. Int J Infect Dis. 2019; 79: 94-100. doi: https://doi.org/10.1016/j.ijid.2018.10.011.

O’Cofaigh E, Lewthwaite P. Natural history of HIV and AIDS. Medicine. 2013;41(8):411-6. doi: https://doi.org/10.1016/j.mpmed.2013.05.009.

del Rio C. The global HIV epidemic: What the pathologist needs to know. Semin Diagn Pathol. 2017;34(4):314-7. doi: https://doi.org/10.1053/j.semdp.2017.05.001.

Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV infection. Immunity. 2013;39(4):633-45. doi: https://doi.org/10.1016/j.immuni.2013.10.001.

Kaplan-Lewis E, Aberg JA, Lee M. Aging with HIV in the ART era. Semin Diagn Pathol. 2017;34(4):384-97. doi: https://doi.org/10.1053/j.semdp.2017.04.002.

Marcus JL, Leyden WA, Alexeeff SE, Anderson AN, Hechter RC, Hu H, et al. Comparison of Overall and Comorbidity-Free Life Expectancy Between Insured Adults With and Without HIV Infection, 2000-2016. JAMA Netw Open. 2020;3(6):e207954. doi: https://doi.org/10.1001/jamanetworkopen.2020.7954.

Mankal PK, Kotler DP. From wasting to obesity, changes in nutritional concerns in HIV/AIDS. Endocrinol Metab Clin North Am. 2014;43(3):647-63. doi: https://doi.org/10.1016/j.ecl.2014.05.004.

Funderburg NT, Mehta NN. Lipid Abnormalities and Inflammation in HIV Inflection. Curr HIV/AIDS Rep. 2016;13(4):218-25. doi: https://doi.org/10.1007/s11904-016-0321-0.

Warriner AH, Burkholder GA, Overton ET. HIV-related metabolic comorbidities in the current ART era. Infect Dis Clin North Am. 2014; 28(3):457-76. doi: https://doi.org/10.1016/j.idc.2014.05.003.

Gil L, Tarinas A, Hernández D, Vega RB, Pérez D, Tápanes R, et al. Altered oxidative stress indexes related to disease progression marker in human immunodeficiency virus infected patients with antiretroviral therapy. Biomed Aging Pathol. 2011;1(1):8-15. doi: https://doi.org/10.1016/j.biomag.2010.09.001.

Utay NS, Hunt PW. Role of immune activation in progression to AIDS. Curr Opin HIV AIDS. 2016;11(2):131-7. doi:https://doi.org/10.1097/COH.0000000000000242.

Akiyama H, Gummuluru S. HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages. Viruses. 2020;12(7):711. doi: https://doi.org/10.3390/v12070711.

Liang H, Xie Z, Shen T. Monocyte activation and cardiovascular disease in HIV infection. Cell Mol Immunol. 2017;14(12):960-2. doi:https://doi.org/10.1038/cmi.2017.109.

Longenecker CT, Sullivan C, Baker JV. Immune Activation and Cardiovascular Disease in Chronic HIV Infection. Curr Opin HIV AIDS. 2016;11(2): 216-25. doi:https://doi.org/10.1097/COH.0000000000000227.

Goh SSL, Lai PSM, Tan ATB, Ponnampalavanar S. Reduced bone mineral density in human immunodeficiency virus-infected individuals: a meta-analysis of its prevalence and risk factors. Osteoporos Int. 2018; 29(3): 595-613. doi: https://doi.org/10.1007/s00198-017-4305-8.

Somsouk M, Estes JD, Deleage C, Dunham RM, Albright R, Inadomi JM, et al. Gut epithelial barrier and systemic inflammation during chronic HIV infection. AIDS. 2015;29(1):43-51. doi: https://doi.org/10.1097/QAD.0000000000000511.

Assimakopoulos SF, Dimitropoulou D, Marangos M, Gogos CA. Intestinal barrier dysfunction in HIV infection: pathophysiology, clinical implications and potential therapies. Infection. 2014;42(6):951-9. doi:https://doi.org/10.1007/s15010-014-0666-5.

Pedersen KK, Pedersen M, Trøseid M, Gaardbo JC, Lund TT, Thomsen C, et al. Microbial translocation in HIV infection is associated with dyslipidemia, insulin resistance, and risk of myocardial infarction. J Acquir Immune Defic Syndr. 2013;64(5):425-33. doi:https://doi.org/10.1097/QAI.0b013e31829f919d.

Logan C, Beadsworth MBJ, Beeching NJ. HIV and diarrhoea: what is new? Curr Opin Infect Dis. 2016;29(5):486-94. doi:https://doi.org/10.1097/QCO.0000000000000305.

de Pee S, Semba RD. Role of nutrition in HIV infection: review of evidence for more effective programming in resource-limited settings. Food Nutr Bull. 2010;31(4):S313-344.

Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371-82. doi:https://doi.org/10.1177/0884533615570376.

Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-85. doi: https://doi.org/10.1016/j.autrev.2014.11.008.

Martinez SS, Campa A, Li Y, Fleetwood C, Stewart T, Ramamoorthy V, et al. Low Plasma Zinc Is Associated with Higher Mitochondrial Oxidative Stress and Faster Liver Fibrosis Development in the Miami Adult Studies in HIV Cohort. J Nutr. 2017;147(4):556-62. doi:https://doi.org/10.3945/jn.116.243832.

Poudel KC, Bertone-Johnson ER, Poudel-Tandukar K. Serum Zinc Concentration and C-Reactive Protein in Individuals with Human Immunodeficiency Virus Infection: the Positive Living with HIV (POLH) Study. Biol Trace Elem Res. 2016;171(1):63-70. doi: https://doi.org/10.1007/s12011-015-0520-3.

Osuna-Padilla IA, Briceño O, Aguilar-Vargas A, Rodríguez-Moguel NC, Villazon-De la Rosa A, Pinto-Cardoso S, et al. Zinc and selenium indicators and their relation to immunologic and metabolic parameters in male patients with human immunodeficiency virus. Nutrition. 2020;70:110585. doi: https://doi.org/10.1016/j.nut.2019.110585.

Mocchegiani E, Veccia S, Ancarani F, Scalise G, Fabris N. Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS. Int J Immunopharmacol. 1995;17(9):719-27. doi:https://doi.org/10.1016/0192-0561(95)00060-F.

Bobat R, Coovadia H, Stephen C, Naidoo KL, McKerrow N, Black RE, et al. Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: a randomised double-blind placebo-controlled trial. Lancet. 2005;366(9500):1862-7. doi: https://doi.org/10.1016/S0140-6736(05)67756-2.

Baum MK, Lai S, Sales S, Page JB, Campa A. Randomized, controlled clinical trial of zinc supplementation to prevent immunological failure in HIV-infected adults. Clin Infect Dis. 2010;50(12):1653-60. doi:https://doi.org/10.1086/652864.

Green JA, Lewin SR, Wightman F, Lee M, Ravindran TS, Paton NI. A randomised controlled trial of oral zinc on the immune response to tuberculosis in HIV-infected patients. Int J Tuberc Lung Dis. 2005;9(12):1378-84.

Cárcamo C, Hooton T, Weiss NS, Gilman R, Wener MH, Chavez V, et al. Randomized controlled trial of zinc supplementation for persistent diarrhea in adults with HIV-1 infection. J Acquir Immune Defic Syndr. 2006;43(2):197-201. doi:https://doi.org/10.1097/01.qai.0000242446.44285.b5.

Fawzi WW, Villamor E, Msamanga GI, Antelman G, Aboud S, Urassa W, et al. Trial of zinc supplements in relation to pregnancy outcomes, hematologic indicators, and T cell counts among HIV-1-infected women in Tanzania. Am J Clin Nutr. 2005;81(1):161-7. doi:https://doi.org/10.1093/ajcn/81.1.161.

Villamor E, Aboud S, Koulinska IN, Kupka R, Urassa W, Chaplin B, et al. Zinc supplementation to HIV-1-infected pregnant women: effects on maternal anthropometry, viral load, and early mother-to-child transmission. Eur J Clin Nutr. 2006;60(7):862-9. doi: https://doi.org/10.1038/sj.ejcn.1602391.

Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001.

Avery JC, Hoffmann PR. Selenium, Selenoproteins, and Immunity. Nutrients. 2018;10(9):1203. doi: https://doi.org/10.3390/nu10091203.

Brigelius-Flohé R, Flohé L. Selenium and redox signaling. Arch Biochem Biophys. 2017;617:48-59. doi: https://doi.org/10.1016/j.abb.2016.08.003.

Pugliese C, Patin RV, Palchetti CZ, Chiantelli CC, Thomé BGAF, de Menezes SRC, et al. Assessment of antioxidants status and superoxide dismutase activity in HIV-infected children. Braz J Infect Dis. 2014;18(5):481-6. doi: https://doi.org/10.1016/j.bjid.2014.02.003.

Shivakoti R, Christian P, Yang W-T, Gupte N, Mwelase N, Kanyama C, et al. Prevalence and risk factors of micronutrient deficiencies pre- and post-antiretroviral therapy (ART) among a diverse multicountry cohort of HIV-infected adults. Clin Nutr. 2016;35(1):183-9. doi: https://doi.org/10.1016/j.clnu.2015.02.002.

Amare TB, Tafess TK, Ota F, Moges F, Moges B, Andualem B, et al. Serum Concentration of Selenium in Diarrheic Patients with and without HIV/AIDS in Gondar, Northwest Ethiopia. J AIDS Clin Res. 2011;2:6. doi:>https://doi.org/10.4172/2155-6113.1000128.

Hurwitz BE, Klaus JR, Llabre MM, Gonzalez A, Lawrence PJ, Maher KJ, et al. Suppression of human immunodeficiency virus type 1 viral load with selenium supplementation: a randomized controlled trial. Arch Intern Med. 2007;167(2):148-54. doi: https://doi.org/10.1001/archinte.167.2.148.

Kamwesiga J, Mutabazi V, Kayumba J, Tayari JCK, Uwimbabazi JC, Batanage G, et al. Effect of selenium supplementation on CD4+ T-cell recovery, viral suppression and morbidity of HIV-infected patients in Rwanda: a randomized controlled trial. AIDS. 2015;29(9):1045-52. doi:https://doi.org/10.1097/QAD.0000000000000673.

Hadadi A, Ostovar A, Noor BE, Rasoolinejad M, Abdolbaghi MH, Yousefi S, et al. The effect of selenium and zinc on CD4(+) count and opportunistic infections in HIV/AIDS patients: a randomized double blind trial. Acta Clin Belg. 2020;75(3):170-6. doi: https://doi.org/10.1080/17843286.2019.1590023.

Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington (DC): National Academies Press (US); 2000.

Sassi F, Tamone C, D’Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018;10(11). doi:https://doi.org/10.3390/nu10111656.

Jiménez-Sousa MÁ, Martínez I, Medrano LM, Fernández-Rodríguez A, Resino S. Vitamin D in Human Immunodeficiency Virus Infection: Influence on Immunity and Disease. Front Immunol. 2018;9:458. doi:https://doi.org/10.3389/fimmu.2018.00458.

Mansueto P, Seidita A, Vitale G, Gangemi S, Iaria C, Cascio A. Vitamin D Deficiency in HIV Infection: Not Only a Bone Disorder. Biomed Res Int. 2015;2015:735615. doi: https://doi.org/10.1155/2015/735615.

Akimbekov NS, Ortoski RA, Razzaque MS. Effects of sunlight exposure and vitamin D supplementation on HIV patients. J Steroid Biochem. 2020;200:105664. doi: https://doi.org/10.1016/j.jsbmb.2020.105664.

Manion M, Hullsiek KH, Wilson EMP, Rhame F, Kojic E, Gibson D, et al. Vitamin D deficiency is associated with IL-6 levels and monocyte activation in HIV-infected persons. PLoS One. 2017;12(5):e0175517. doi: https://doi.org/10.1371/journal.pone.0175517.

Calza L, Borderi M, Granozzi B, Malosso P, Pancaldi L, Bon I, et al. Vitamin D insufficiency is associated with subclinical atherosclerosis in HIV-1-infected patients on combination antiretroviral therapy. HIV Research & Clinical Practice. 2019;20(6):131-9. doi:https://doi.org/10.1080/25787489.2020.1724749.

Eckard AR, O’Riordan MA, Rosebush JC, Lee ST, Habib JG, Ruff JH, et al. Vitamin D supplementation decreases immune activation and exhaustion in HIV-1-infected youth. Antivir Ther. 2018; 23(4):315-24. doi: https://doi.org/10.3851/IMP3199.

Eckard AR, O’Riordan MA, Rosebush JC,Ruff JH, Chahroudi A, Labbato D, et al. Effects of Vitamin D Supplementation on Bone Mineral Density and Bone Markers in HIV-Infected Youth. J Acquir Immune Defic Syndr. 2017;76(5): 539-46. doi: https://doi.org/10.1097/QAI.0000000000001545.

Havens PL, Stephensen CB, Van Loan MD, Schuster GU, Woodhouse LR, Flynn PM, et al. Vitamin D3 Supplementation Increases Spine Bone Mineral Density in Adolescents and Young Adults With Human Immunodeficiency Virus Infection Being Treated With Tenofovir Disoproxil Fumarate: A Randomized, Placebo-Controlled Trial. Clin Infect Dis. 2018;66(2):220-8. doi:https://doi.org/10.1093/cid/cix753.

Yin MT, RoyChoudhury A, Bucovsky M, Colon I, Ferris DC, Olender S, et al. A Randomized Placebo-Controlled Trial of Low- Versus Moderate-Dose Vitamin D3 Supplementation on Bone Mineral Density in Postmenopausal Women With HIV. J Acquir Immune Defic Syndr. 2019; 80(3):342-9. doi: https://doi.org/10.1097/QAI.0000000000001929.

Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US); 2011.

Radzikowska U, Rinaldi AO, Çelebi SZ, Karaguzel D, Wojcik M, Cypryk K, et al. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients. 2019;11(12):2990. doi: https://doi.org/10.3390/nu11122990.

Metkus TS, Timpone J, Leaf D, Bidwell Goetz M, Harris WS, Brown TT. Omega-3 fatty acid therapy reduces triglycerides and interleukin-6 in hypertriglyeridemic HIV patients. HIV Med. 2013;14(9):530-9. doi: https://doi.org/10.1111/hiv.12046.

Coghill AE, Schenk JM, Mahkoul Z, Orem J, Phipps W, Casper C. Omega-3 decreases IL-6 levels in HIV and human HHV-8 co-infected patients: results from a randomized supplementation trial in Uganda. AIDS. 2018;32(4):505-12. doi:https://doi.org/10.1097/QAD.0000000000001722.

Amador-Licona N, Díaz-Murillo TA, Gabriel-Ortiz G, Pacheco-Moises FP, Pereyra-Nobara TA, Guízar-Mendoza JM, et al. Omega 3 Fatty Acids Supplementation and Oxidative Stress in HIV-Seropositive Patients. A Clinical Trial. PLoS One. 2016;11(3). doi:https://doi.org/10.1371/journal.pone.0151637.

Zhang Y-G, Xia Y, Lu R, Sun J. Inflammation and intestinal leakiness in older HIV+ individuals with fish oil treatment. Genes Dis. 2018;5(3):220-5. doi:https://doi.org/10.1016/j.gendis.2018.07.001.

Peters BS, Wierzbicki AS, Moyle G, Nair D, Brockmeyer N. The effect of a 12-week course of omega-3 polyunsaturated fatty acids on lipid parameters in hypertriglyceridemic adult HIV-infected patients undergoing HAART: a randomized, placebo-controlled pilot trial. Clin Ther. 2012;34(1):67-76. doi:https://doi.org/10.1016/j.clinthera.2011.12.001.

Oliveira JM, Rondó PHC, Yudkin JS, Souza JMP, Pereira TN, Catalani AW, et al. Effects of fish oil on lipid profile and other metabolic outcomes in HIV-infected patients on antiretroviral therapy: a randomized placebo-controlled trial. Int J STD AIDS. 2014;25(2):96-104. doi:https://doi.org/10.1177/0956462413513748.

Domingo P, Gallego-Escuredo JM, Fernández I, Villarroya J, Torres F, Gutierrez MDM, et al. Effects of docosahexanoic acid supplementation on inflammatory and subcutaneous adipose tissue gene expression in HIV-infected patients on combination antiretroviral therapy (cART). A sub-study of a randomized, double-blind, placebo-controlled study. Cytokine. 2018;105:73-9. doi:https://doi.org/10.1016/j.cyto.2018.02.008.

Domingo P, Fernández I, Gallego-Escuredo JM, Torres F, Gutierrez MDM, Mateo MG, et al. Effects of docosahexanoic acid on metabolic and fat parameters in HIV-infected patients on cART: A randomized, double-blind, placebo-controlled study. Clin Nutr. 2018;37(4):1340-7. doi:>https://doi.org/10.1016/j.clnu.2017.05.032.

Oliveira JM, Rondó PHC. Omega-3 fatty acids and hypertriglyceridemia in HIV-infected subjects on antiretroviral therapy: systematic review and meta-analysis. HIV Clin Trials. 2011;12(5):268-74. doi:https://doi.org/10.1310/hct1205-268.

Fogacci F, Strocchi E, Veronesi M, Borghi C, Cicero AFG. Effect of Omega-3 Polyunsaturated Fatty Acids Treatment on Lipid Pattern of HIV Patients: A Meta-Analysis of Randomized Clinical Trials. Mar Drugs. 2020;18(6):292. doi:https://doi.org/10.3390/md18060292.

Shah KK, Verma R, Oleske JM, Scolpino A, Bogden JD. Essential trace elements and progression and management of HIV infection. Nutr Res. 2019;71:21-9. doi:https://doi.org/10.1016/j.nutres.2019.08.001

Mehta S, Fawzi W. Effects of vitamins, including vitamin A, on HIV/AIDS patients. Vitam Horm. 2007;75:355-83. doi: https://doi.org/10.1016/S0083-6729(06)75013-0.

Wiysonge CS, Ndze VN, Kongnyuy EJ, Shey MS, Cochrane Infectious Diseases Group. Vitamin A supplements for reducing mother‐to‐child HIV transmission. Cochrane Database Syst Rev. 2017;(9): CD003648. doi: https://doi.org/10.1002/14651858.CD003648.pub4.

Makinde O, Rotimi K, Ikumawoyi V, Adeyemo T, Olayemi S. Effect of vitamin A and vitamin C supplementation on oxidative stress in HIV and HIV-TB co-infection at Lagos University Teaching Hospital (LUTH) Nigeria. Afr Health Sci. 2017;17(2):308-14. doi: https://doi.org/10.4314/ahs.v17i2.3.

Drain PK, Kupka R, Mugusi F, Fawzi WW. Micronutrients in HIV-positive persons receiving highly active antiretroviral therapy. Am J Clin Nutr. 2007;85(2):333-45. doi:https://doi.org/10.1093/ajcn/85.2.333.

Carter GM, Indyk D, Johnson M, Andreae M, Suslov K, Busani S, et al. Micronutrients in HIV: a Bayesian meta-analysis. PLoS One. 2015;10(4):e0120113. doi:https://doi.org/10.1371/journal.pone.0120113.

Visser ME, Durao S, Sinclair D, Irlam JH, Siegfried N. Micronutrient supplementation in adults with HIV infection. Cochrane Database Syst Rev. 2017;5(5): CD003650. doi: https://doi.org/10.1002/14651858.CD003650.pub4.

Published

2020-08-31

How to Cite

Osuna- Padilla, I. A., Rodríguez Moguel, N. C., Aguilar Vargas, A., & Briceño, O. (2020). Clinical and immunological implications of micronutrients during HIV infection. Journal Clinical Nutrition and Metabolism, 3(2), 74–86. https://doi.org/10.35454/rncm.v3n2.166