Factores de riesgo de origen nutricional asociados al desarrollo de debilidad adquirida en la unidad de cuidados intensivos: revisión narrativa

Autores/as

  • Alan Garcia Grimaldo Instituto Nacional de Enfermedades Respiratorias https://orcid.org/0000-0002-2842-0731
  • Alejandra Desirée Huerta-Vega
  • Luis César Reyes-Moreno Hospital Star Médica Roma
  • Jaciel Gallardo Gómez Hospital General Regional "Dr Bernardo Sepúlveda Gutiérrez"
  • Marycarmen Godínez-Victoria

DOI:

https://doi.org/10.35454/rncm.v6n2.503

Palabras clave:

polineuropatía adquirida, enfermedad crítica, composición corporal, hiperglucemia, autofagia, restricción calórica

Resumen

La debilidad adquirida en la unidad de cuidados intensivos (DA-UCI) se define como la disminución de fuerza y funcionalidad muscular en pacientes críticamente enfermos sin otra posible causa más que la condición crítica. Se han reportado diferentes factores de riesgo asociados al desarrollo de DA-UCI los cuales tienen un efecto parcial o total sobre el deterioro de las fibras musculares; no obstante, algunos de los factores de riesgo asociados al estado nutricional se siguen considerando de menor prioridad, debido a la falta de concientización sobre sus beneficios clínicos. El objetivo de la presente revisión narrativa es recolectar información sobre factores de riesgos modificables de origen nutricional relacionados con el desarrollo de DA-UCI y proporcionar recomendaciones para su prevención. Se realizó una búsqueda de información en bases de datos y motores de búsqueda de literatura científica en inglés y español (PubMed, Springer Link y Medline) con los términos MeSH: “acquired polyneuropathy”, “critical illness”, “body composition”, “hyperglycemia”, “autophagy”, “caloric restriction”. Se han propuesto diferentes factores de riesgo de origen nutricional; sin embargo, no existe evidencia contundente sobre su relación con la prevención de DA-UCI. La identificación de los factores de riesgo para el desarrollo de DA-UCI, principalmente de aquellos potencialmente modificables, es la principal estrategia para la prevención de esta entidad clínica. Se requiere información adicional sobre su relación con el desarrollo de DA-UCI, sobre todo de aquellos de origen nutricional. 

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637–53. doi: 10.1007/s00134-020-05944-4

Sharshar T, Bastuji-Garin S, Stevens RD, Durand MC, Malissin I, Rodriguez P, et al. Presence and severity of intensive care unit-acquired paresis at time of awakening are associated with increased intensive care unit and hospital mortality. Crit Care Med. 2009;37(12):3047–53. doi: 10.1097/CCM.0b013e3181b027e9

Piva S, Fagoni N, Latronico N. Intensive care unit–acquired weakness: unanswered questions and targets for future research. F1000Res. 2019;8:F1000 Faculty Rev-508. doi: 10.12688/f1000research.17376.1

Bragança RD, Ravetti CG, Barreto L, Ataíde TBLS, Carneiro RM, Teixeira AL, et al. Use of handgrip dynamometry for diagnosis and prognosis assessment of intensive care unit acquired weakness: A prospective study. Heart Lung. 2019;48(6):532–7. doi: 10.1016/j.hrtlng.2019.07.001

Ali NA, O’Brien JM, Hoffmann SP, Phillips G, Garland A, Finley JCW, et al. Acquired Weakness, Handgrip Strength, and Mortality in Critically Ill Patients. Am J Respir Crit Care Med. 2008;178(3):261–8. doi: 10.1164/rccm.200712-1829OC

Schefold JC, Wollersheim T, Grunow JJ, Luedi MM, Z’Graggen WJ, Weber‐Carstens S. Muscular weakness and muscle wasting in the critically ill. J Cachexia Sarcopenia Muscle. 2020;11(6):1399–412. doi: 10.1002/jcsm.12620

Lopez-Ruiz A, Kashani K. Assessment of muscle mass in critically ill patients: role of the sarcopenia index and images studies. Curr Opin Clin Nutr Metab Care. 2020;23(5):302–11. doi: 10.1097/MCO.0000000000000673

Latronico N, Gosselink R. A guided approach to diagnose severe muscle weakness in the intensive care unit. Rev Bras Ter Intensiva. 2015;27(3):199-201. doi: 10.5935/0103-507X.20150036

Narayan SK, Gudivada KK. Assessment of Nutritional Status in the Critically Ill. Indian J Crit Care Med. 2020;24(Suppl 4):S152-S156. doi: 10.5005/jp-journals-10071-23617

van Zanten ARH, De Waele E, Wischmeyer PE. Nutrition therapy and critical illness: practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit Care. 2019;23(1):368. doi: 10.1186/s13054-019-2657-5

Kress JP, Hall JB. ICU-Acquired Weakness and Recovery from Critical Illness. N Engl J Med. 2014;370(17):1626–35. doi: 10.1056/NEJMra1209390

van Gassel RJJ, Baggerman MR, van de Poll MCG. Metabolic aspects of muscle wasting during critical illness: Curr Opin Clin Nutr Metab Care. 2020;23(2):96–101. doi: 10.1097/MCO.0000000000000628

Fazzini B, Märkl T, Costas C, Blobner M, Schaller SJ, Prowle J, et al. The rate and assessment of muscle wasting during critical illness: a systematic review and meta-analysis. Crit Care. 2023;27(1):2. doi: 10.1186/s13054-022-04253-0

Wischmeyer PE, San-Millan I. Winning the war against ICU-acquired weakness: new innovations in nutrition and exercise physiology. Crit Care. 2015;19 Suppl 3(Suppl 3):S6. doi: 10.1186/cc14724

Osuna-Padilla IA, Rodríguez-Moguel NC, Rodríguez-Llamazares S, Orsso CE, Prado CM, Ríos-Ayala MA, et al. Low muscle mass in COVID-19 critically-ill patients: Prognostic significance and surrogate markers for assessment. Clin Nutr. 2022;41(12):2910-2917. doi: 10.1016/j.clnu.2022.02.019

Akamatsu Y, Kusakabe T, Arai H, Yamamoto Y, Nakao K, Ikeue K, et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J Cachexia Sarcopenia Muscle. 2022;13(1):180–9. doi: 10.1002/jcsm.12860

Osuna‐Padilla IA, Rodríguez‐Moguel NC, Rodríguez‐Llamazares S, Aguilar‐Vargas A, Casas‐Aparicio GA, Ríos‐Ayala MA, et al. Low phase angle is associated with 60‐day mortality in critically ill patients with COVID‐19. J Parenter Enter Nutr. 2022;46(4):828–35. doi: 10.1002/jpen.2236

van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345(19):1359-67. doi: 10.1056/NEJMoa011300

Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of Early Mobilization on Glycemic Control and ICU-Acquired Weakness in Critically Ill Patients Who Are Mechanically Ventilated. Chest. 2014;146(3):583–9. doi: 10.1378/chest.13-2046

Wang W, Xu C, Ma X, Zhang X, Xie P. Intensive Care Unit-Acquired Weakness: A Review of Recent Progress With a Look Toward the Future. Front Med (Lausanne). 2020;7:559789. doi: 10.3389/fmed.2020.559789

Hermans G, De Jonghe B, Bruyninckx F, Berghe G. Clinical review: Critical illness polyneuropathy and myopathy. Crit Care. 2008;12(6):238. doi: 10.1186/cc7100

Chapple LS, Weinel L, Ridley EJ, Jones D, Chapman MJ, Peake SL. Clinical Sequelae From Overfeeding in Enterally Fed Critically Ill Adults: Where Is the Evidence? J Parenter Enter Nutr. 2020;44(6):980–91. doi: 10.1002/jpen.1740

Singer P, Blaser AR, Berger MM, Alhazzani W, Calder PC, Casaer MP, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48–79. doi: 10.1016/j.clnu.2018.08.037

McClave SA, Taylor BE, Martindale RG, Warren MM, Johnson DR, Braunschweig C, et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). J Parenter Enter Nutr. 2016;40(2):159–211. doi: 10.1177/0148607115621863

Dickerson RN, Buckley CT. Impact of Propofol Sedation upon Caloric Overfeeding and Protein Inadequacy in Critically Ill Patients Receiving Nutrition Support. Pharmacy (Basel). 2021;9(3):121. doi: 10.3390/pharmacy9030121

Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization; 2009.

Kocot AM, Wróblewska B. Nutritional strategies for autophagy activation and health consequences of autophagy impairment. Nutrition. 2022;103–104:111686. doi: 10.1016/j.nut.2022.111686

Puthucheary Z, Gunst J. Are periods of feeding and fasting protective during critical illness? Curr Opin Clin Nutr Metab Care. 2021;24(2):183–8. doi: 10.1097/MCO.0000000000000718

Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, et al. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol. 2021;12:638983. doi: 10.3389/fphys.2021.638983

Lad H, Saumur TM, Herridge MS, dos Santos CC, Mathur S, Batt J, et al. Intensive Care Unit-Acquired Weakness: Not Just Another Muscle Atrophying Condition. Int J Mol Sci. 2020;21(21):7840. doi: 10.3390/ijms21217840

McClave SA, Weijs PJM. Preservation of autophagy should not direct nutritional therapy: Curr Opin Clin Nutr Metab Care. 2015;18(2):155–61. doi: 10.1097/MCO.0000000000000144

Heyland DK, Wischmeyer PE. Does artificial nutrition improve outcome of critical illness? An alternative viewpoint! Crit Care. 2013;17(4):324. doi: 10.1186/cc12701

Bear DE, Hart N, Puthucheary Z. Continuous or intermittent feeding: pros and cons. Curr Opin Crit Care. 2018;24(4):256–61. doi: 10.1097/MCC.0000000000000513

Heffernan AJ, Talekar C, Henain M, Purcell L, Palmer M, White H. Comparison of continuous versus intermittent enteral feeding in critically ill patients: a systematic review and meta-analysis. Crit Care. 2022;26(1):325. doi: 10.1186/s13054-022-04140-8

Li Y, Jiang J, Liu W, Wang H, Zhao L, Liu S, et al. microRNA-378 promotes autophagy and inhibits apoptosis in skeletal muscle. Proc Natl Acad Sci U S A. 2018;115(46):E10849-E10858. doi: 10.1073/pnas.1803377115

Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RN MC, Delarue J, et al. Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr. 2005;24(4):502–9. doi: 10.1016/j.clnu.2005.03.006

Hermans G, Casaer MP, Clerckx B, Güiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNIC trial. Lancet Respir Med. 2013;1(8):621–9. doi: 10.1016/S2213-2600(13)70183-8

Chapple LS, Deane AM, Heyland DK, Lange K, Kranz AJ, Williams LT, et al. Energy and protein deficits throughout hospitalization in patients admitted with a traumatic brain injury. Clin Nutr. 2016;35(6):1315–22. doi: 10.1016/j.clnu.2016.02.009

Fetterplace K, Beach LJ, MacIsaac C, Presneill J, Edbrooke L, Parry SM, et al. Associations between nutritional energy delivery, bioimpedance spectroscopy and functional outcomes in survivors of critical illness. J Hum Nutr Diet. 2019;32(6):702–12. doi: 10.1111/jhn.12659

Gunst J, Van den Berghe G. Intensive Care Nutrition and Post–Intensive Care Recovery. Crit Care Clin. 2018;34(4):573–83. doi: 10.1016/j.ccc.2018.06.004

Wei X, Day AG, Ouellette-Kuntz H, Heyland DK. The Association Between Nutritional Adequacy and Long-Term Outcomes in Critically Ill Patients Requiring Prolonged Mechanical Ventilation: A Multicenter Cohort Study. Crit Care Med. 2015;43(8):1569–79. doi: 10.1097/CCM.0000000000001000

Publicado

2023-05-24

Cómo citar

Garcia Grimaldo, A., Huerta-Vega, A. D., Reyes-Moreno, L. C., Gallardo Gómez, J., & Godínez-Victoria, M. (2023). Factores de riesgo de origen nutricional asociados al desarrollo de debilidad adquirida en la unidad de cuidados intensivos: revisión narrativa. Revista De Nutrición Clínica Y Metabolismo, 6(2). https://doi.org/10.35454/rncm.v6n2.503

Número

Sección

Artículos de revisión