Evaluación antropométrica de la adiposidad corporal y el riesgo cardiovascular en relación a sus factores de riesgo en población adulta de Neiva

Autores/as

  • Ph.D. Deivis Villanueva Universidad del Atlántico https://orcid.org/0000-0001-5159-7976
  • MD. Dayana Conde Fundación Universitaria Navarra
  • MD. María Ojeda Fundación Universitaria Navarra
  • M.Sc Nubia Ruiz Fundación Universitaria Navarra
  • Ph.D. Juan Zambrano Universidad de Nariño

Palabras clave:

Obesidad, Obesidad abdominal, Sobrepeso, Adiposidad, Ejercicio fisico

Resumen

Introducción. El sobrepeso y la obesidad son enfermedades crónicas no transmisibles (ECNT) que poseen dimensiones pandémicas en la actualidad, y se constituyen en importantes factores de riesgo cardiometabólicos, para el desarrollo de otras ECNT.

Objetivos. Estimar prevalencia de adiposidad corporal y riesgo cardiovascular (RCV) mediante los índices IMC, ICC, ICA, IPM y PA, y a su vez, explorar la asociación de tales índices con información sociodemográfica, calidad de la dieta e inactividad física.

Métodos. Estudio de corte transversal, en 971 adultos de ambos sexos, del área urbana de Neiva, desde junio de 2018 a junio de 2019. Profesionales de la salud realizaron antropometría para calcular los índices supra cit., empleando protocolos estandarizados. Fueron utilizados puntos de corte validados para población latinoamericana y colombiana, para clasificación en normopeso, sobrepeso, obesidad, obesidad abdominal y RCV.

Resultados. Fueron registradas las siguientes prevalencias; 56.5% exceso de peso, 39.5% sobrepeso, 17% obesidad, 48% obesidad abdominal, 41.1% normopeso, 2.4% bajo peso, 68.5% RCV, 43% RCV alto, 21.7% RCV muy alto, 63.8% calidad regular y mala de la dieta, 57% inactividad física. Los índices supra cit., se asociaron con aumento de la edad, sexo masculino, aumento de la adiposidad corporal, calidad de la dieta e inactividad física.

Conclusiones. Las altas prevalencias para exceso de peso, sobrepeso, obesidad y RCV observadas en adultos de Neiva, son debidas en parte a la alta proporción de calidad regular y mala de la dieta e inactividad física.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ph.D. Deivis Villanueva, Universidad del Atlántico

Doctor en Medicina Tropical, Red de Universidades Estatales del Caribe Colombiano.

Facultad de Ciencias Básicas, Universidad del Atlántico.

MD. Dayana Conde, Fundación Universitaria Navarra

Médica General, egresada del programa de Medicina de la Fundación Universitaria Navarra.

MD. María Ojeda, Fundación Universitaria Navarra

Médica General, egresada del programa de Medicina de la Fundación Universitaria Navarra.

M.Sc Nubia Ruiz, Fundación Universitaria Navarra

Magíster en Genética Humana, Instituto de Genética de la Universidad Nacional de Colombia.

Bacterióloga.

Ph.D. Juan Zambrano, Universidad de Nariño

Doctor en Ciencias- Biotecnología, Universidad Nacional de Colombia sede Medellín.

Magíster en Ciencias- Biotecnología, Universidad Nacional de Colombia sede Medellín.

Químico Universidad de Nariño.

Citas

Mechanick JI, Hurley DL, Garvey WT. Adiposity-Based Chronic Disease as a New Diagnostic Term: The American Association of Clinical Endocrinologists and American College of Endocrinology Position Statement. Endocr Pract. 2017;23(3):372-378. https://doi.org/10.4158/EP161688.PS

World Health Organization (WHO). World health statistics 2021: monitoring health for the SDGs, sustainable development goals. Geneva: WHO; 2021. 121p. Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/handle/10665/342703

World Health Organization (WHO). Global Status Report on noncommunicable diseases 2014. Switzerland; WHO: 2014. 280p. ISBN:9789241564854 https://apps.who.int/iris/handle/10665/148114

World Health Organization (WHO). World health statistics 2018: monitoring health for the SDGs, sustainable development goals. 86p. Licence: CC BY-NC-SA 3.0 IGO. https://apps.who.int/iris/handle/10665/272596

Abarca L, Abdeen ZA, Hamid ZA, Abu-Rmeileh NM, Acosta B, Acuin C, et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. The Lancet. 2017;390(10113):2627-2642.https://doi.org/10.1016/S0140-736(17)32129-3

Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2016 (GBD 2016) Cause-Specific Mortality 1980-2016. Seattle, United States: Institute for Health Metrics and Evaluation (IHME), 2017. https://ghdx.healthdata.org/record/ihme-data/gbd-2016-cause-specific-Mortality-1980-2016

Miranda JJ, Herrera VM, Chirinos JA, Gómez LF, Perel P, Pichardo R, et al. Major cardiovascular risk factors in Latin America: A comparison with the United States. The Latin American Consortium of Studies in Obesity (LASO). PLoS One. 2013;8(1):e54056. https://doi.org/10.1371/journal.pone.0054056

Stanaway JD, Afshin A, Gakidou E, Lim SS, Abate D, Abate KH, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet. 2018;392(10159):1923-1994. https://doi.org/10.1016/S0140-6736(18)32225-6

Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants. The Lancet Global Health. 2018;6(10):e1077-e1086. https://doi.org/10.1016/S2214-109X(18)30357-7

Kovalskys I, Fisberg M, Gómez G, Pareja RG, Yépez MC, Cortés LY, et al. Energy intake and food sources of eight Latin American countries: results from the Latin American Study of Nutrition and Health (ELANS). Public Health Nutr. 2018;21(14):2535-2547. https://doi.org/10.1017/S1368980018001222

Chacín M, Carrillo S, Arenas V, Martínez M, Hernández J, Anderson H, et al. Prevalencia de sobrepeso y obesidad en escolares de San José de Cúcuta, Norte de Santander, Colombia. Revista Latinoamericana de Hipertensión. 2020;15(5):315-321. https://www.revhipertension.com/rlh_5_2020/3_prevalencia_sobrepeso_obesidad.pdf

Ruiz ÁJ, Aschner PJ, Puerta MF, Cristancho RA. Estudio IDEA (International Day for Evaluation of Abdominal Obesity): prevalencia de obesidad abdominal y factores de riesgo asociados en atención primaria en Colombia. Biomédica. 2012;32(4). http://dx.doi.org/10.7705/biomedica.v32i4.799

Jiménez MA, Nieves LD, Montaño A, Betancourt EC, Mendivil CO. Association of Overweight, Obesity and Abdominal Obesity with Socioeconomic Status and Educational Level in Colombia. Diabetes Metab Syndr Obes. 2020;13:1887-1898. https://doi.org/10.2147/DMSO.S244761

Gil Y, Garzón A, Hernández F, Pacheco B, González D, Campos J. Burden of Disease Attributable to Obesity and Overweight in Colombia. Value Health Reg Issues. 2019;20:66-72. https://doi.org/10.1016/j.vhri.2019.02.001

Pan American Health Organization (PAHO) and the University of Washington. Economic dimensions of non-communicable disease in Latin America and the Caribbean. Disease control priorities. 3th edition. Companion volume [internet]; 2016. 172p. ISBN:978-92-75-11905-1. https://iris.paho.org/handle/10665.2/28501

Instituto Colombiano de Bienestar Familiar (ICBF), Ministerio de Salud y Protección Social, Instituto Nacional de Salud de Colombia, et al. Encuesta nacional de la situación nutricional en Colombia-ENSIN 2015. Libro, 683 Páginas. [internet] 2015 [citado 2022 abril 4].

Ley 1355 del 14 de octubre de 2009. Diario oficial de la República de Colombia. Año CXLIV No. 47.502. [internet] 2009. [citado 2022 abril 4]. ISSN 0122-2112. 32 páginas.

Ramos CA, González JA, López JD. Actividad física y adiposidad en la población de Neiva. Revista Educación Física y Deporte, 2013;32(2):1481-89. https://revistas.udea.edu.co/index.php/educacionfisicaydeporte/article/view/17901

Dirección de Censos y Demografía (DCD), Departamento Administrativo Nacional de Estadística (DANE) de Colombia. Archivo Nacional de Datos (ANDA), Microdatos Huila. Censo Nacional de Población y Vivienda-CNPV-DANE, 2018. [internet] 2018, [citado 2022 oct 20], http://microdatos.dane.gov.co/index.php/catalog/643/get_microdata

World Health Organization (WHO). Obesity: preventing and managing the global epidemic: report of a WHO consultation. 2000. WHO technical report series; 894. Geneve 2000. 252p. https://apps.who.int/iris/handle/10665/42330

Billewicz WZ, Kemsley WF, Thomson AM. Indices of adiposity. Br J Prev Soc Med. 1962;16:183-8. http://dx.doi.org/10.1136/jech.16.4.183

World Health Organization (WHO). Waist circumference and waist–hip ratio: report of a WHO expert consultation, Geneva, 8–11 december, 2008. ISBN: 9789241501491. https://www.who.int/publications/i/item/9789241501491

Buendía R, Zambrano M, Díaz Á, Reino A, Ramírez July, Espinosa E. Puntos de corte de perímetro de cintura para el diagnóstico de obesidad abdominal en población colombiana usando bioimpedanciometría como estándar de referencia. Revista Colombiana de Cardiología. 2016;23(1):19-25. https://doi.org/10.1016/j.rccar.2015.07.011

Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk factors: prevalence study in a random sample. BMJ, 1995;311:1401-5. https://doi.org/ 10.1136/bmj.311.7017.1401

World Health Organization (WHO). Obesity, preventing and managing the global epidemic-report of a WHO consultation on obesity. Geneva: WHO.1997. https://apps.who.int/iris/handle/10665/44583

Aráuz AG, Guzmán S, Roselló M. La circunferencia abdominal como indicador de riesgo de enfermedad cardiovascular. Acta méd costarric. 2013;55(3):122-127.

World Health Organization (WHO). The WHO STEPwise approach to noncommunicable disease risk factor surveillance: WHO STEPS Surveillance Manual. WHO, Geneve, 2020. [Internet] [Last Updated: 2 October 2020]. https://www.who.int/teams/noncommunicable-diseases/surveillance/systems-tools/steps/manuals

Bados DM, Basante JL, Benavides LM, Santofimio OA, Martínez A, Mejía AM. Obesidad, riesgo cardiovascular y actividad física en estudiantes de Medicina de tres universidades colombianas. Estudio multicéntrico. Revista Colombiana de Endocrinología, Diabetes y Metabolismo. 2020;7 (3):164-169. http://revistaendocrino.org/index.php/rcedm/article/view/628

Fajardo E, Varela JM, Castro J, Daza C, Garzón L, Méndez M. Caracterización del estado nutricional y la actividad física en una población de pilotos de ala fija y rotativa en la ciudad de Bogotá (Colombia). Rev.Fac.Med, 2015;23(1):12-18. https://doi.org/10.18359/rmed.1325

Oliveros O, García CE, Bustos BJ, Acevedo AA, Aguirre A. Indicadores antropométricos de adiposidad en adultos del municipio del carmen de chucurí: diferencias rural-urbano. Rev.Salus.UC. 2020, 24(2):21-26. http://servicio.bc.uc.edu.ve/fcs/vol24n2/art03.pdf

Ashwell M, Gibson S. Waist-to-height ratio as an indicator of 'early health risk': simpler and more predictive than using a 'matrix' based on BMI and waist circumference. BMJ Open. 2016;6(3):e010159. https://doi.org/10.1136/bmjopen-2015-010159

Yim YK, Lee C, Lee HJ, Park KS. Gender and measuring-position differences in the radial pulse of healthy individuals. J Acupunct Meridian Stud. 2014;7(6):324-330. https://doi.org/10.1016/j.jams.2014.06.014

Lloyd DM, Larson MG, Beiser A, Levy D. Lifetime risk of developing coronary heart disease. The Lancet. 1999;353(9147):89-92. https://doi.org/10.1016/S0140-6736(98)10279-9

World Health Organization (WHO). Diet, nutrition and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation, Geneva. WHO, 2003. ISBN:924120916X. https://apps.who.int/iris/handle/10665/42665

Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO). Sustainable healthy diets – Guiding principles. Rome, 2019. ISBN: 978-92-5-131875-1. 44p. https://doi.org/10.4060/CA6640EN

Organización Mundial de la Salud (OMS). Recomendaciones mundiales sobre actividad física para la salud. Suiza: OMS; 2010. ISBN: 9789243599977.58p.http://apps.who.int/iris/bitstream/handle/10665/44441/9789243599977_spa.pdf?sequence=1

World Health Organization (WHO). WHO guidelines on physical activity and sedentary behaviour: at a glance. Geneva: WHO; 2020. Licence: CC BY-NC-SA 3.0 IGO. ISBN: 978-92-4-001488-6. https://www.who.int/publications/i/item/9789240014886

Barker B, Li Y. Power analysis for experimental research: A practical guide for the biological, medical, and social sciences. Cambridge: Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511541933

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2021. https://www.R-project.org/

García AI, Niño L, González K, Ramírez R. Volumen de grasa visceral como indicador de obesidad en hombres adultos. Revista Colombiana de Cardiología. 2016;23(4):313-320. https://doi.org/10.1016/j.rccar.2015.12.009

Kasper NM, Herran OF, Villamor E. Obesity prevalence in Colombian adults is increasing fastest in lower socio-economic status groups and urban residents: results from two nationally representative surveys. Public Health Nutr. 2014;17(11):2398-406. https://doi.org/10.1017/S1368980013003418

Kim KB, Shin YA. Males with Obesity and Overweight. J Obes Metab Syndr. 2020;29(1):18-25. https://doi.org/10.7570/jomes20008

Aschner P, Ruiz A, Balkau B, Massien C, Hafner SM. Association of abdominal adiposity with diabetes and cardiovascular disease in Latin America. J Clin Hypertens (Greenwich). 2009;11(12):769-74. https://doi.org/10.1111/j.1559-4572.2008.00051.x

Zambrano R. Estilo de vida de una comunidad rural del municipio de Tarqui (Huila) y su relación con la salud cardiovascular. [Internet]. 2013 [citado: 2021, diciembre] Universidad Nacional de Colombia Sede Bogotá Facultad de Enfermería. https://repositorio.unal.edu.co/handle/unal/20744

Mejía-Rubiano GE, et al. Caracterización sociodemográfica y familiar de obesos intervenidos a través de cirugía bariátrica en el Hospital Universitario de Neiva. R.F.S Revista Facultad de Salud. 2014, 6(1):59-66. https://doi.org/10.25054/rfs.v6i1.155

Silventoinen K, Jelenkovic A, Sund R, Hur YM, Yokoyama Y, Honda C. Genetic and environmental effects on body mass index from infancy to the onset of adulthood: an individual-based pooled analysis of 45 twin cohorts participating in the COllaborative project of Development of Anthropometrical measures in Twins (CODATwins) study. Am J Clin Nutr 2016;104(2):371-9. https://doi.org/10.3945/ajcn.116.130252

Ruderman A, Pérez LO, Adhikari K, Navarro P, Ramallo V, Gallo C. Obesity, genomic ancestry, and socioeconomic variables in Latin American mestizos. Am J Hum Biol. 2019 Sep;31(5):e23278. https://doi.org/10.1002/ajhb.23278

Jiang L, Penney KL, Giovannucci E, Kraft P, Wilson KM. A genome-wide association study of energy intake and expenditure. PLoS One. 2018;13(8):e0201555. https://doi.org/10.1371/journal.pone.0201555

Brandkvist M, Bjorngaard JH, Odegard RA, Asvold BO, Sund ER, Vie GA. Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT Study. BMJ. 2019;366:l4067. https://doi.org/10.1136/bmj.l4067

Chande AT, Rowell J, Rishishwar L, Conley AB, Norris ET, Valderrama A. Influence of genetic ancestry and socioeconomic status on type 2 diabetes in the diverse Colombian populations of Choco and Antioquia. Sci Rep. 2017;7(1):17127. https://doi.org/10.1038/s41598-017-17380-4

Gonzalez Y, Trujillo ML, Forero DA. Two dopaminergic genes, DRD4 and SLC6A3, are associated with body mass index in a Colombian sample of young adults. Arch Physiol Biochem. 2018;124(4):330-334. https://doi.org/10.1080/13813455.2017.1401643

Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014;14:311. Https://doi.org/10.1186/s12866-014-0311-6

Mourtakos SP, Tambalis KD, Panagiotakos DB, Antonogeorgos G, Arnaoutis G, Karteroliotis K. Maternal lifestyle characteristics during pregnancy, and the risk of obesity in the offspring: a study of 5,125 children. BMC Pregnancy Childbirth. 2015;15:66. https://doi.org/10.1186/s12884-015-0498-z

Álvarez LS, González L, Góez JD. Socioeconomic determinants of abdominal obesity in Medellín, Colombia. Rev. Esp. Nutr. Hum. Diet.. 2014;18(4):194-204. https://bibliotecadigital.udea.edu.co/handle/10495/11973

Reyes U, Mesenburg MA, Victora CG. Socioeconomic inequalities in the prevalence of underweight, overweight, and obesity among women aged 20-49 in low- and middle-income countries. Int J Obes (Lond). 2020;44(3):609-616. https://doi.org/10.1038/s41366-019-0503-0

Vargas RF, Alcocer A, Bilbao J, Lío JF, Fontalvo G, Cerro C. Prevalencia de obesidad según relación cintura/talla en cuatro municipios del caribe colombiano. Archivos de Medicina (Manizales). 2018;18(1):60-68. https://doi.org/10.30554/archmed.18.1.2356.2018

Ruiz A, Adhikari K, Acuña V, Quinto M, Jaramillo C, Arias W. Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet. 2014;10(9):e1004572. https://doi.org/10.1371/journal.pgen.1004572

Yunis JJ, Acevedo LE, Campo DS, Junis EJ. Geno-geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from Colombia. Biomedica. 2013;33(3):459-467. http://dx.doi.org/10.7705/biomedica.v33i3.807

Rishishwar L, Conley AB, Wigington CH, Wang L, Valderrama A, Jordan IK. Ancestry, admixture and fitness in Colombian genomes. Sci Rep. 2015;5:12376. https://doi.org/10.1038/srep12376

Schneider HJ, Friedrich N, Klotsche J, Pieper L, Nauck M, Jhon U. The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab. 2010;95(4):1777-85. https://doi.org/10.1210/jc.2009-1584

Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: Analysis of data from the British National Diet And Nutrition Survey of adults aged 19-64 years. Obes Facts. 2009;2(2):97-103. https://doi.org/10.1159/000203363

García EA, Márquez H, Flores LF, Villa AR. The pulse-mass index as a predictor of cardiovascular events in women with systemic lupus erythematosus. Med Clin (Barc). 2017:148(2):57-62. https://doi.org/10.1016/j.medcle.2016.09.034

Lara R, Andrade M, Gil M, Montenegro C. Análisis de situación de salud con el modelo de los determinantes sociales (ASIS) municipio de Neiva-Huila 2018. Secretaría Municipal de Salud de Neiva, Año 2018. [Internet] [citado 05 abr. 2022]. https://www.huila.gov.co/documentos/1206/asis-2018/?genPagDocs=2

Thorne A, Hallberg D, Wahren J. Meal-induced thermogenesis in obese patients before and after weight reduction. Clin Physiol. 1989;9:481-98. https://doi.org/10.1111/j.1475-097x.1989.tb01002.x

Gnatiuc L, Tapia R, Wade R, Ramirez R, Aguilar D, Herrington W. Abdominal and gluteo-femoral markers of adiposity and risk of vascular-metabolic mortality in a prospective study of 150 000 Mexican adults. Eur J Prev Cardiol. 2021 Mar 9:zwab038. https://doi.org/10.1093/eurjpc/zwab038

Descargas

Publicado

2022-12-22

Cómo citar

Villanueva Pájaro, D. J., Conde Calderón, D. L. ., Ojeda Rosero, M. C. ., Ruiz Suárez, N. A. ., & Zambrano Arteaga, J. C. (2022). Evaluación antropométrica de la adiposidad corporal y el riesgo cardiovascular en relación a sus factores de riesgo en población adulta de Neiva. Revista De Nutrición Clínica Y Metabolismo. Recuperado a partir de https://revistanutricionclinicametabolismo.org/index.php/nutricionclinicametabolismo/article/view/449

Número

Sección

Artículo original