Efeitos da reabilitação precoce no paciente adulto gravemente doente: uma revisão narrativa
DOI:
https://doi.org/10.35454/rncm.v6n2.505Palavras-chave:
Cuidado Crítico, Fisioterapia, doença crítica, reabilitação precoce, unidade de terapia intensiva, desgaste muscular, fraqueza muscular, exercícioResumo
A inatividade física do paciente durante uma longa internação hospitalar contribui para a perda de massa muscular, principalmente nas extremidades inferiores, o que por sua vez gera complicações e internações prolongadas. O estado catabólico durante a doença crítica causa uma mudança de função no músculo. Por dia, na unidade de terapia intensiva (UTI) há perda de 2% da massa muscular, sendo que na primeira semana de internação hospitalar há perda de 12,5% da área de secção transversa do músculo na presença de ventilação mecânica (VM). A fraqueza adquirida na UTI (FMA-UTI) é uma condição de fraqueza generalizada que ocorre durante uma doença crítica e ocorre em até 50% dos pacientes gravemente enfermos. A FMA-UTI está relacionada principalmente à imobilização no leito hospitalar, maior duração da VM, aumento do tempo de internação acompanhada de redução da massa muscular esquelética, bem como aumento da mortalidade. Na UTI, o principal indicador a avaliar no paciente é a fraqueza muscular. O objetivo desta revisão foi descrever os efeitos da permanência prolongada e do repouso no leito no paciente em estado crítico, bem como a importância da reabilitação precoce. De acordo com os resultados, a reabilitação precoce baseada na mobilidade progressiva na UTI é uma questão prioritária que visa prevenir a deterioração musculoesquelética e favorecer a recuperação física, além disso, reduz a permanência na UTI, diminui os dias de VM, melhora a qualidade de vida e diminui a mortalidade.
Downloads
Referências
Uster A, Ruehlin M, Mey S, Gisi D, Knols R, Imoberdorf R, et al. Effects of nutrition and physical exercise intervention in palliative cancer patients: A randomized controlled trial. Clin Nutr. 2018;37(4):1202-1209. doi: 10.1016/j.clnu.2017.05.027
Wandrag L, Brett SJ, Frost GS, Bountziouka V, Hickson M. Exploration of muscle loss and metabolic state during prolonged critical illness: Implications for intervention?. PLoS One. 2019;14(11):e0224565. doi: 10.1371/journal.pone.0224565
Gropper S, Hunt D, Chapa DW. Sarcopenia and Psychosocial Variables in Patients in Intensive Care Units: The Role of Nutrition and Rehabilitation in Prevention and Treatment. Crit Care Nurs Clin North Am. 2019;31(4):489-499. doi: 10.1016/j.cnc.2019.07.004
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. doi: 10.1093/ageing/afy169
Hashem MD, Nelliot A, Needham DM. Early Mobilization and Rehabilitation in the ICU: Moving Back to the Future. Respir Care. 2016;61(7):971-979. doi: 10.4187/respcare.04741
Wischmeyer PE, Puthucheary Z, San Millán I, Butz D, Grocott MPW. Muscle mass and physical recovery in ICU: innovations for targeting of nutrition and exercise. Curr Opin Crit Care. 2017;23(4):269-278. doi: 10.1097/MCC.0000000000000431
Puthucheary ZA, Astin R, Mcphail MJW, Saeed S, Pasha Y, Bear DE, et al. Metabolic phenotype of skeletal muscle in early critical illness. Thorax. 2018;73(10):926-935. doi: 10.1136/thoraxjnl-2017-211073
Hodgson CL, Tipping CJ. Physiotherapy management of intensive care unit-acquired weakness. J Physiother. 2017;63(1):4-10. doi: 10.1016/j.jphys.2016.10.011
Elkins M, Dentice R. Inspiratory muscle training facilitates weaning from mechanical ventilation among patients in the intensive care unit: a systematic review. J Physiother. 2015;61(3):125-134. doi: 10.1016/j.jphys.2015.05.016
Alam MJ, Roy S, Iktidar MA, Padma FK, Nipun KI, Chowdhury S, et al. Diaphragm ultrasound as a better predictor of successful extubation from mechanical ventilation than rapid shallow breathing index. Acute Crit Care. 2022;37(1):94-100. doi: 10.4266/acc.2021.01354
Thille AW, Boissier F, Muller M, Levrat A, Bourdin G, Rosselli S, et al. Role of ICU-acquired weakness on extubation outcome among patients at high risk of reintubation. Crit Care. 2020;24(1):86. doi: 10.1186/s13054-020-2807-9
Ndahimana D, Kim EK. Energy Requirements in Critically Ill Patients. Clin Nutr Res. 2018;7(2):81-90. doi: 10.7762/cnr.2018.7.2.81
Borges RC, Soriano FG. Association Between Muscle Wasting and Muscle Strength in Patients Who Developed Severe Sepsis And Septic Shock. Shock. 2019;51(3):312-320. doi: 10.1097/SHK.0000000000001183
Veldema J, Bösl K, Kugler P, Ponfick M, Gdynia HJ, Nowak DA. Cycle ergometer training vs resistance training in ICU-acquired weakness. Acta Neurol Scand. 2019;140(1):62-71. doi: 10.1111/ane.13102
Doiron KA, Hoffmann TC, Beller EM. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst Rev. 2018;3(3):CD010754. doi: 10.1002/14651858.CD010754.pub2
Tipping CJ, Harrold M, Holland A, Romero L, Nisbet T, Hodgson CL. The effects of active mobilisation and rehabilitation in ICU on mortality and function: a systematic review. Intensive Care Med. 2017;43(2):171-183. doi: 10.1007/s00134-016-4612-0
Eggmann S, Luder G, Verra ML, Irincheeva I, Bastiaenen CHG, Jakob SM. Functional ability and quality of life in critical illness survivors with intensive care unit acquired weakness: A secondary analysis of a randomised controlled trial. PLoS One. 2020;15(3):e0229725. doi: 10.1371/journal.pone.0229725
McWilliams D, Jones C, Atkins G, Hodson J, Whitehouse T, Veenith T, et al. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: A feasibility randomised controlled trial. J Crit Care. 2018;44:407-412. doi: 10.1016/j.jcrc.2018.01.001
Voiriot G, Oualha M, Pierre A, Salmon-Gandonnière C, Gaudet A, Jouan Y, et al. Chronic critical illness and post-intensive care syndrome: from pathophysiology to clinical challenges. Ann Intensive Care. 2022;12(1):58. doi: 10.1186/s13613-022-01038-0
de Azevedo JRA, Lima HCM, Frota PHDB, Nogueira IROM, de Souza SC, Fernandes EAA, et al. High-protein intake and early exercise in adult intensive care patients: a prospective, randomized controlled trial to evaluate the impact on functional outcomes. BMC Anesthesiol. 2021;21(1):283. doi: 10.1186/s12871-021-01492-6
Wright SE, Thomas K, Watson G, Baker C, Bryant A, Chadwick TJ, et al. Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial. Thorax. 2018;73(3):213-221. doi: 10.1136/thoraxjnl-2016-209858
Schujmann DS, Teixeira Gomes T, Lunardi AC, Lamano MZ, Fragoso A, Pimentel M, et al. Impact of a Progressive Mobility Program on the Functional Status, Respiratory, and Muscular Systems of ICU Patients: A Randomized and Controlled Trial. Crit Care Med. 2020;48(4):491-497. doi: 10.1097/CCM.0000000000004181
Barbalho M, Rocha AC, Seus TL, Raiol R, Del Vecchio FB, Coswig VS. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin Rehabil. 2019;33(2):233-240. doi: 10.1177/0269215518801440
Schaller SJ, Scheffenbichler FT, Bose S, Mazwi M, Deng H, Krebs F, et al. Influence of the initial level of consciousness on early, goal-directed mobilization: a post hoc analysis. Intensive Care Med. 2019;45(2):201-210. doi: 10.1007/s00134-019-05528-x
Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD,Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377-1388. doi: 10.1016/S0140-6736(16)31637-3
Karadas C, Ozdemir L. The effect of range of motion exercises on delirium prevention among patients aged 65 and over in intensive care units. Geriatr Nurs. 2016;37(3):180-185. doi: 10.1016/j.gerinurse.2015.12.003
Kho ME, Molloy AJ, Clarke FJ, Reid JC, Herridge MS, Karachi T, et al. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respir Res. 2019;6(1):e000383. doi: 10.1136/bmjresp-2018-000383
Kho ME, Molloy AJ, Clarke FJ, Ajami D, McCaughan M, Obrovac K, et al. TryCYCLE: A Prospective Study of the Safety and Feasibility of Early In-Bed Cycling in Mechanically Ventilated Patients. PLoS One. 2016;11(12):e0167561. doi: 10.1371/journal.pone.0167561
Maffei P, Wiramus S, Bensoussan L, Bienvenu L, Haddad E, Morange S, et al. Intensive Early Rehabilitation in the Intensive Care Unit for Liver Transplant Recipients: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2017;98(8):1518-1525. doi: 10.1016/j.apmr.2017.01.028
Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, et al. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU. Crit Care Med. 2016;44(6):1145-1152. doi: 10.1097/CCM.0000000000001643
Pang Y, Li H, Zhao L, Zhang C. An Established Early Rehabilitation Therapy Demonstrating Higher Efficacy and Safety for Care of Intensive Care Unit Patients. Med Sci Monit. 2019;25:7052-7058. doi: 10.12659/MSM.916210
Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial. PLoS One. 2018;13(11):e0207428. doi: 10.1371/journal.pone.0207428
Windmöller P, Bodnar ET, Casagrande J, Dallazen F, Schneider J, Berwanger SA, et al. Physical Exercise Combined With CPAP in Subjects Who Underwent Surgical Myocardial Revascularization: A Randomized Clinical Trial. Respir Care. 2020;65(2):150-157. doi: 10.4187/respcare.06919
Liu D, Xu Z, Qu C, Huo B. [Efficacy and safety of early physical therapy for acute gastrointestinal injury during mechanical ventilation in patients with sepsis: a randomized controlled pilot trial]. Nan Fang Yi Ke Da Xue Xue Bao. 2019;39(11):1298-1304. doi: 10.12122/j.issn.1673-4254.2019.11.06
Sarfati C, Moore A, Pilorge C, Amaru P, Medialdua P, Rodet E, et al. Efficacy of early passive tilting in minimizing ICU-acquired weakness: A randomized controlled trial. J Crit Care. 2018;46:37-43. doi: 10.1016/j.jcrc.2018.03.031
Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically Ill Adults: A Randomized Clinical Trial. JAMA. 2018;320(4):368-378. doi: 10.1001/jama.2018.9592
Chen YH, Hsiao HF, Li LF, Chen NH, Huang CC. Effects of Electrical Muscle Stimulation in Subjects Undergoing Prolonged Mechanical Ventilation. Respir Care. 2019;64(3):262-271. doi: 10.4187/respcare.05921
Ferrie S, Allman-Farinelli M, Daley M, Smith K. Protein Requirements in the Critically Ill: A Randomized Controlled Trial Using Parenteral Nutrition. JPEN J Parenter Enteral Nutr. 2016;40(6):795-805. doi: 10.1177/0148607115618449
Sommers J, Engelbert RH, Dettling-Ihnenfeldt D, Gosselink R, Spronk PE, Nollet F, et al. Physiotherapy in the intensive care unit: an evidence-based, expert driven, practical statement and rehabilitation recommendations. Clin Rehabil. 2015;29(11):1051-1063. doi: 10.1177/0269215514567156
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2023 Javier López-Yarce, Obed Solis Martínez, RUBEN ROQUE
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.