O papel da nutrição na saúde mental e nos transtornos psiquiátricos: uma perspectiva translacional
DOI:
https://doi.org/10.35454/rncm.v5n1.358Palavras-chave:
Transtornos psiquiátricos, Microbiota intestinal, Probióticos, Saúde mental, Nutrição, VitaminasResumo
Doenças mentais e distúrbios neurológicos estão entre as principais causas de incapacidade em todo o mundo. Nos últimos anos, vários estudos epidemiológicos têm investigado a relação entre padrões alimentares e estado mental, enfatizando a influência de fatores genéticos e ambientais no desenvolvimento desses transtornos.
Downloads
Referências
Whiteford HA, Ferrari AJ, Degenhardt L, Feigin V, Vos T. The global burden of mental, neurological and substance use disorders: An analysis from the Global Burden of Disease Study 2010. PLoS One. 2015;10(2):1-14. doi: 10.1371/journal.pone.0116820.
Lakhan SE, Vieira KF. Nutritional therapies for mental disorders. Nutr J. 2008;7(1):1-8. doi: 10.1186/1475-2891-7-2.
Rucklidge JJ, Kaplan BJ. Nutrition and mental health. Clin Psychol Sci. 2016;4(6):1082-4. doi: 10.1177/2167702616641050.
Lim SY, Kim EJ, Kim A, Lee HJ, Choi HJ, Yang SJ. Nutritional factors affecting mental health. Clin Nutr Res. 2016;5(3):143. doi: 10.7762/cnr.2016.5.3.143.
Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanzá-Martínez V, Freeman MP, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015;2(3):271-4. doi: 10.1016/S2215-0366(14)00051-0.
Marx W, Moseley G, Berk M, Jacka F. Nutritional psychiatry: The present state of the evidence. Proc Nutr Soc. 2017;76(4):427-36. doi: 10.1017/S0029665117002026.
Magistretti PJ, Allaman I. A cellular perspective on brain energy metabolism and functional imaging. Neuron. 2015;86(4):883-901. doi: 10.1016/j.neuron.2015.03.035.
Logan AC, Jacka FN. Nutritional psychiatry research: An emerging discipline and its intersection with global urbanization, environmental challenges and the evolutionary mismatch. J Physiol Anthropol. 2014;33(1):1-16. doi: 10.1186/1880-6805-33-22.
Firth J, Veronese N, Cotter J, Shivappa N, Hebert JR, Ee C, et al. What is the role of dietary inflammation in severe mental illness? A review of observational and experimental findings. Front Psychiatry. 2019;10:350. doi: 10.3389/fpsyt.2019.00350.
Adan RAH, van der Beek EM, Buitelaar JK, Cryan JF, Hebebrand J, Higgs S, et al. Nutritional psychiatry: Towards improving mental health by what you eat. Eur Neuropsychopharmacol. 2019;29(12):1321-32. doi: 10.1016/j.euroneuro.2019.10.011.
Horovitz O. Food and mood: Rethinking of mental illness through nutrition. EC Psychol Psychiatry. 2019:1032-4.
Raju MSVK. Medical nutrition in mental health and disorders. Indian J Psychiatry. 2017;59(2):143-8. doi: 10.4103/psychiatry.IndianJPsychiatry_193_17.
Kaur J, Bhatia MS, Gautam P. Role of dietary factors in psychiatry. Delhi Psychiatry J. 2014;17(2):452-7.
Berk M, Williams LJ, Jacka FN, O’Neil A, Pasco JA, Moylan S, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013;11(1):1-16. doi: 10.1186/1741-7015-11-200.
Fernandes BS, Steiner J, Molendijk ML, Dodd S, Nardin P, Gonçalves CA, et al. C-reactive protein concentrations across the mood spectrum in bipolar disorder: A systematic review and meta-analysis. Lancet Psychiatry. 2016;3(12):1147-56. doi: 10.1016/S2215-0366(16)30370-4.
Fernandes BS, Steiner J, Bernstein HG, Dodd S, Pasco JA, Dean OM, et al. C-reactive protein is increased in schizophrenia but is not altered by antipsychotics: Meta-analysis and implications. Mol Psychiatry. 2016;21(4):554-64. doi: 10.1038/mp.2015.87.
Moylan S, Berk M, Dean OM, Samuni Y, Williams LJ, O’Neil A, et al. Oxidative & nitrosative stress in depression: Why so much stress? Neurosci Biobehav Rev. 2014;45:46-62. doi: 10.1016/j.neubiorev.2014.05.007.
Liu T, Zhong S, Liao X, Chen J, He T, Lai S, et al. A meta-analysis of oxidative stress markers in depression. PLoS One. 2015;10(10):1-17. doi: 10.1371/journal.pone.0138904.
Mörkl S, Wagner-Skacel J, Lahousen T, Lackner S, Holasek SJ, Bengesser SA, et al. The role of nutrition and the gut-brain axis in psychiatry: A review of the literature. Neuropsychobiology. 2020;79(1):80-8. doi: 10.1159/000492834.
O’Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res. 2015;277:32-48. doi: 10.1016/j.bbr.2014.07.027.
Lv F, Chen S, Wang L, Jiang R, Tian H, Li J, et al. The role of microbiota in the pathogenesis of schizophrenia and major depressive disorder and the possibility of targeting microbiota as a treatment option. Oncotarget. 2017;8(59):100899-907. doi: 10.18632/oncotarget.21284.
Generoso JS, Giridharan VV, Lee J, Macedo D, Barichello T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz J Psychiatry. 2021;43(3):293-305. doi: 10.1590/1516-4446-2020-0987.
Cheng LH, Liu YW, Wu CC, Wang S, Tsai YC. Psychobiotics in mental health, neurodegenerative and neurodevelopmental disorders. J Food Drug Anal. 2019;27(3):632-48. doi: 10.1016/j.jfda.2019.01.002.
Dinan TG, Cryan JF. Gut instincts: Microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595(2):489-503. doi: 10.1113/JP273106.
Anglin RES, Samaan Z, Walter SD, Sarah DM. Vitamin D deficiency and depression in adults: Systematic review and meta-analysis. Br J Psychiatry. 2013;202(2):100-7. doi: 10.1192/bjp.bp.111.106666.
Hoogendijk WJG, Lips P, Dik MG, Deeg DJH, Beekman ATF, Penninx BWJH. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry. 2008;65(5):508-12. doi: 10.1001/archpsyc.65.5.508.
Fernandes de Abreu DA, Eyles D, Féron F. Vitamin D, a neuro-immunomodulator: Implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology. 2009;34(1):S265-77. doi: 10.1016/j.psyneuen.2009.05.023.
McGrath J. Hypothesis: Is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr Res. 1999;40(3):173-7. doi: 10.1016/s0920-9964(99)00052-3.
McGrath JJ, Eyles DW, Pedersen CB, Anderson C, Ko P, Burne TH, et al. Neonatal vitamin D status and risk of schizophrenia. Arch Gen Psychiatry. 2010;67(9):889-94. doi: 10.1001/archgenpsychiatry.2010.110.
Bhatia P, Singh N. Homocysteine excess: Delineating the possible mechanism of neurotoxicity and depression. Fundam Clin Pharmacol. 2015;29(6):522-8. doi: 10.1111/fcp.12145.
Rathod R, Kale A, Joshi S. Novel insights into the effect of vitamin B12 and omega-3 fatty acids on brain function. J Biomed Sci. 2016;23:17. doi: 10.1186/s12929-016-0241-8.
Hainsworth AH, Yeo NE, Weekman EM, Wilcock DM. Homocysteine, hyperhomocysteinemia and vascular contributions to cognitive impairment and dementia (VCID). Biochim Biophys Acta. 2016;1862(5):1008-17. doi: 10.1016/j.bbadis.2015.11.015.
Levkovitz Y, Alpert JE, Brintz CE, Mischoulon D, Papakostas GI. Effects of S-adenosylmethionine augmentation of serotonin-reuptake inhibitor antidepressants on cognitive symptoms of major depressive disorder. Eur Psychiatry. 2012;27(7):518-21. doi: 10.1016/j.eurpsy.2011.03.006.
Cao B, Sun XY, Zhang CB, Yan JJ, Zhao QQ, Yang SY, et al. Association between B vitamins and schizophrenia: A population-based case-control study. Psychiatry Res. 2018;259:501-5. doi: 10.1016/j.psychres.2017.11.006.
Sinclair AJ, Begg D, Mathai M, Weisinger RS. Omega 3 fatty acids and the brain: Review of studies in depression. Asia Pac J Clin Nutr. 2007;16(1):391-7.
Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, et al. The role of omega-3 fatty acids in developmental psychopathology: A systematic review on early psychosis, autism, and ADHD. Int J Mol Sci. 2017;18(12):2608. doi: 10.3390/ijms18122608.
Freund Levi Y, Vedin I, Cederholm T, Basun H, Faxén Irving G, Eriksdotter M, et al. Transfer of omega-3 fatty acids across the blood-brain barrier after dietary supplementation with a docosahexaenoic acid-rich omega-3 fatty acid preparation in patients with Alzheimer’s disease: The OmegAD study. J Intern Med. 2014;275(4):428-36. doi: 10.1111/joim.12166.
Grosso G, Galvano F, Marventano S, Malaguarnera M, Bucolo C, Drago F, et al. Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxid Med Cell Longev. 2014;2014:313570. doi: 10.1155/2014/313570.
Sublette ME, Ellis SP, Geant AL, Mann JJ. Meta-analysis of the effects of eicosapentaenoic acid (EPA) in clinical trials in depression. J Clin Psychiatry. 2011;72(12):1577-84. doi: 10.4088/JCP.10m06634.
Hoen WP, Lijmer JG, Duran M, Wanders RJ, van Beveren NJ, de Haan L. Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: A meta-analysis. Psychiatry Res. 2013;207(1-2):1-12. doi: 10.1016/j.psychres.2012.09.041.
Velasco I, Bath SC, Rayman MP. Iodine as essential nutrient during the first 1000 days of life. Nutrients. 2018;10(3):1-16. doi: 10.3390/nu10030290.
Markhus MW, Dahl L, Moe V, Abel MH, Brantsæter AL, Øyen J, et al. Maternal iodine status is associated with offspring language skills in infancy and toddlerhood. Nutrients. 2018;10(9). doi: 10.3390/nu10091270.
Pinto E, Ramos P, Vital C, Santos A, Almeida A. Iodine levels in different regions of the human brain. J Trace Elem Med Biol. 2020;62:126579. doi: 10.1016/j.jtemb.2020.126579.
Mohammed H, Marquis GS, Aboud F, Bougma K, Samuel A. Pre-pregnancy iodized salt improved children’s cognitive development in randomized trial in Ethiopia. Matern Child Nutr. 2020;16(3):1-10. doi: 10.1111/mcn.12943.
Belaidi AA, Bush AI. Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: Targets for therapeutics. J Neurochem. 2016;179-97. doi: 10.1111/jnc.13425.
McAllum EJ, Hare DJ, Volitakis I, McLean CA, Bush AI, Finkelstein DI, et al. Regional iron distribution and soluble ferroprotein profiles in the healthy human brain. Prog Neurobiol. 2020;186:101744. doi: 10.1016/j.pneurobio.2019.101744.
Akroyd A, Gunn KN, Rankin S, Douglas M, Kleinstäuber M, Rief W, et al. Optimizing patient expectations to improve therapeutic response to medical treatment: A randomized controlled trial of iron infusion therapy. Br J Health Psychol. 2020;1-13. doi: 10.1111/bjhp.12435.
Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr Int J Paediatr. 2018;107(8):1310-21. doi: 10.1111/apa.14287.
Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Kotozaki Y, Nakagawa S, et al. Association of iron levels in hair with brain structures and functions in young adults. J Trace Elem Med Biol. 2020;58:126436. doi: 10.1016/j.jtemb.2019.126436.
Wang B, Zhan S, Gong T, Lee L. Iron therapy for improving psychomotor development and cognitive function in children under the age of three with iron deficiency anaemia. Cochrane Database Syst Rev. 2013;2013(6). doi: 10.1002/14651858.CD001444.pub2.
Arija V, Hernández-Martínez C, Tous M, Canals J, Guxens M, Fernández-Barrés S, et al. Association of iron status and intake during pregnancy with neuropsychological outcomes in children aged 7 years: The prospective birth cohort Infancia y Medio Ambiente (INMA) study. Nutrients. 2019;11(12):2999. doi: 10.3390/nu11122999.
Kassir A. Carence en fer: une perspective diagnostique et thérapeutique en psychiatrie. Encephale. 2017;43(1):85-9. doi : 10.1016/j.encep.2016.08.002.
Doenyas C. Gut microbiota, inflammation, and probiotics on neural development in autism spectrum disorder. Neuroscience. 2018;374:271-86.
Nikolova V, Zaidi SY, Young AH, Cleare AJ, Stone JM. Gut feeling: Randomized controlled trials of probiotics for the treatment of clinical depression: Systematic review and meta-analysis. Ther Adv Psychopharmacol. 2019;9:204512531985996. doi: 10.1177/2045125319859963.
Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009;1(1):6. doi: 10.1186/1757-4749-1-6.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 ENRIQUE CERVANTES PÉREZ
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.