Determinantes da densidade mineral óssea e o papel do exercício com cargas em pessoas idosas

Autores

DOI:

https://doi.org/10.35454/rncm.v4n3.292

Palavras-chave:

Exercício físico, Metabolismo ósseo, Saúde pública, Nutrição

Resumo

Nos últimos anos, têm aumentado as alterações que afetam a densidade óssea, como a osteopenia e a osteoporose. A melhor estratégia para o controle dessas doenças é o manejo médico-nutricional, onde o exercício físico desempenha um papel importante. No entanto, ainda existem controvérsias na dosagem para o controle da saúde óssea.

Downloads

Não há dados estatísticos.

Referências

Bales C, Porter Starr K. Obesity interventions for older adults: Diet as a determinant of physical function. Adv Nutr. 2018;9(2):151-9. doi: 10.1093/advances/nmx016.

Porter Starr K, Orenduff M, McDonald S, Mulder H, Sloane R, Pieper C, et al. Influence of weight reduction and enhanced protein intake on biomarkers of inflammation in older adults with obesity. J Nutr Gerontol Geriatr. 2019;38(1):33-49. doi: 10.1080/21551197.2018.1564200.

Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle. Diabetol Metab Syndr. 2020;12:14. doi: 10.1186/s13098-020-0523-x.

McCormick R, Vasilaki A. Age-related changes in skeletal muscle: Changes to life-style as a therapy. Biogerontology. 2018;19(6):519-36. doi: 10.1007/s10522-018-9775-3.

Kim SW, Jung SW, Seo MW, Park HY, Song JK. Effects of bone-specific physical activity on body composition, bone mineral density, and health-related physical fitness in middle-aged women. J Exerc Nutrition Biochem. 2019;23(4):36-42. doi: 10.20463/jenb.2019.0030.

Posch M, Schranz A, Lener M, Tecklenburg K, Burtscher M, Ruedl G, et al. Effectiveness of a mini-trampoline training program on balance and functional mobility, gait performance, strength, fear of falling and bone mineral density in older women with osteopenia. Clin Interv Aging. 2019;14:2281-93. doi: 10.2147/CIA.S230008.

Padilla C, Molina-Vicenty I, Frontera-Rodríguez M, García-Ferré A, Rivera B, Cintrón-Vélez G, et al. Muscle and bone mass loss in the elderly population: Advances in diagnosis and treatment. J Biomed (Syd). 2018;3:40-9. doi: 10.7150/jbm.23390.

Prieto-Peralta M, Sandoval-Cuellar C, Cobo-Mejía EA. Efectos de la actividad física en la calidad de vida relacionada con la salud en adultos con osteopenia y osteoporosis: revisión sistemática y metaanálisis. Fisioterapia. 2017;39(2):83-92. doi: 10.1016/j.ft.2016.08.002.

Ji MX, Yu Q. Primary osteoporosis in postmenopausal women. Chronic Dis Transl Med. 2015;1(1):9-13. doi: 10.1016/j.cdtm.2015.02.006.

Ramírez-Villada J, León-Ariza H, Argüello-Gutiérrez Y, Porras-Ramírez K. Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years. Rev Esp Geriatr Gerontol. 2016;51(2):68-74. doi: 10.1016/j.regg.2015.09.001.

Răduț R, Crăciun A, Silaghi C. Bone markers in arthropathies. Acta Clin Croat. 2019;58(4):716-25. doi: 10.20471/acc.2019.58.04.19.

Weivoda M, Chew C, Monroe D, Farr J, Atkinson E, Geske J, et al. Identification of osteoclast-osteoblast coupling factors in humans reveals links between bone and energy metabolism. Nat Commun. 2020;11(1):87. doi: 10.1038/s41467-019-14003-6.

Teti A, Econs M. Osteopetroses, emphasizing potential approaches to treatment. Bone. 2017;102:50-9. doi: 10.1016/j.bone.2017.02.002.

Vacher J, Bruccoleri M, Pata M. Ostm1 from mouse to human: Insights into osteoclast maturation. Int J Mol Sci. 2020;21(16):5600. doi: 10.3390/ijms21165600.

Armamento-Villareal R, Aguirre L, Waters D, Napoli N, Qualls C, Villareal D. Effect of aerobic or resistance exercise, or both, on bone mineral density and bone metabolism in obese older adults while dieting: A randomized controlled trial. J Bone Miner Res. 2020;35(3):430-9. doi: 10.1002/jbmr.3905.

Daly R, Gianoudis J, Kersh M, Bailey C, Ebeling P, Krug R, et al. Effects of a 12-month supervised, community-based, multimodal exercise program followed by a 6-month research-to-practice transition on bone mineral density, trabecular microarchitecture, and physical function in older adults: A randomized controlled trial. J Bone Miner Res. 2020;35(3):419-29. doi: 10.1002/jbmr.3865.

Mohammad R, Smart N, Liang M, Bijeh N, Albanaqi A, Fathi M, et al. The impact of different modes of exercise training on bone mineral density in older postmenopausal women: A systematic review and meta-analysis research. Calcif Tissue Int. 2020;106(6):577-90. doi: 10.1007/s00223-020-00671-w.

Kemmler W, Kohl M, Fröhlich M, Jakob F, Engelke K, von Stengel S, et al. Effects of high-intensity resistance training on osteopenia and sarcopenia parameters in older men with osteosarcopenia-one-year results of the randomized controlled franconian osteopenia and sarcopenia trial (FrOST). J Bone Miner Res. 2020;35(9):1634-44. doi: 10.1002/jbmr.4027.

Clark G, Duncan E. The genetics of osteoporosis. Br Med Bull. 2015;113(1):73-81. doi: 10.1093/bmb/ldu042.

Turner J. Locus (Genetics). En: Gellman M, Turner J (editores). Encyclopedia of behavioral medicine. New York, NY: Springer. 2013. p. 1170. doi: 10.1007/978-1-4419-1005-9_708.

Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, et al. Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature. 2015;526(7571):112-7. doi: 10.1038/nature14878.

Zhang H, Liu L, Ni JJ, Wei XT, Feng GJ, Yang XL, et al. Pleiotropic loci underlying bone mineral density and bone size identified by a bivariate genome-wide association analysis. Osteoporos Int. 2020;31(9):1691-701. doi: 10.1007/s00198-020-05389-x.

Gregson C, Newell F, Leo P, Clark G, Paternoster L, Marshall M, et al. Genome-wide association study of extreme high bone mass: Contribution of common genetic variation to extreme BMD phenotypes and potential novel BMD-associated genes. Bone. 2018;114:62-71. doi: 10.1016/j.bone.2018.06.001.

Warrington N, Kemp J, Tilling K, Tobias J, Evans D. Genetic variants in adult bone mineral density and fracture risk genes are associated with the rate of bone mineral density acquisition in adolescence. Hum Mol Genet. 2015;24(14):4158-66. doi: 10.1093/hmg/ddv143.

Costantini A, Mäkitie O. Value of rare low bone mass diseases for osteoporosis genetics. Bonekey Rep. 2016;5:773. doi: 10.1038/bonekey.2015.143.

Zhang L, Yin X, Wang J, Xu D, Wang Y, Yang J, et al. Associations between VDR gene polymorphisms and osteoporosis risk and bone mineral density in postmenopausal women: A systematic review and meta-analysis. Sci Rep. 2018;8(1):981. doi: 10.1038/s41598-017-18670-7.

Mondockova V, Adamkovicova M, Lukacova M, Grosskopf B, Babosova R, Galbavy D, et al. The estrogen receptor 1 gene affects bone mineral density and osteoporosis treatment efficiency in Slovak postmenopausal women. BMC Med Genet. 2018;19(1):174. doi: 10.1186/s12881-018-0684-8.

Mitchell J, Cousminer D, Zemel B, Grant S, Chesi A. Genetics of pediatric bone strength. Bonekey Rep. 2016;5:823. doi: 10.1038/bonekey.2016.50.

Chen B, Li HZ. Association of IL-6 174G/C (rs1800795) and 572C/G (rs1800796) polymorphisms with risk of osteoporosis: A meta-analysis. BMC Musculoskelet Disord. 2020;21(1):330. doi: 10.1186/s12891-020-03334-x.

Fu SC, Wang P, Qi MX, Peng JP, Lin XQ, Zhang CY, et al. The associations of TNF-α gene polymorphisms with bone mineral density and risk of osteoporosis: A meta-analysis. Int J Rheum Dis. 2019;22(9):1619-29. doi: 10.1111/1756-185X.13647.

Sheng X, Cai G, Gong X, Yao Z, Zhu Y. Common variants in OPG confer risk to bone mineral density variation and osteoporosis Fractures. Sci Rep. 2017;7:1739. doi: 10.1038/s41598-017-01579-6.

Chen YC, Zhang L, Li EN, Ding LX, Zhang GA, Hou Y, et al. Association of the insulin-like growth factor-1 single nucleotide polymorphisms rs35767, rs2288377, and rs5742612 with osteoporosis risk: A meta-analysis. Medicine. 2017;96(51):e9231. doi: 10.1097/MD.0000000000009231.

Sun J, Zhang C, Xu L, Yang M, Yang H. The transforming growth factor-β1 (TGF-β1) gene polymorphisms (TGF-β1 T869C and TGF-β1 T29C) and susceptibility to postmenopausal osteoporosis: a meta-analysis. Medicine. 2015;94(4):e461. doi: 10.1097/MD.0000000000000461.

Cannarella R, Barbagallo F, Condorelli R, Aversa A, La Vignera S, Calogero A. Osteoporosis from an endocrine perspective: The role of hormonal changes in the elderly. J Clin Med. 2019;8(10). doi: 10.3390/jcm8101564.

Delitala A, Scuteri A, Doria C. Thyroid hormone diseases and osteoporosis. J Clin Med. 2020;9(4):1034. doi: 10.3390/jcm9041034.

Bloise F, Cordeiro A, Ortiga-Carvalho T. Role of thyroid hormone in skeletal muscle physiology. J Endocrinol. 2018;236(1):R57-R68. doi: 10.1530/JOE-16-0611.

Bassett J, Williams G. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37(2):135-87. doi: 10.1210/er.2015-1106.

Apostu D, Lucaciu O, Oltean-Dan D, Mureșan AD, Moisescu-Pop C, Maxim A, et al. The influence of thyroid pathology on osteoporosis and fracture risk: A review. Diagnostics (Basel). 2020;10(3):149. doi: 10.3390/diagnostics10030149.

Lindsey R, Mohan S. Skeletal effects of growth hormone and insulin-like growth factor-I therapy. Mol Cell Endocrinol. 2016;432:44-55. doi: 10.1016/j.mce.2015.09.017.

Tritos N, Klibanski A. Effects of growth hormone on bone. Prog Mol Biol Transl Sci. 2016;138:193-211. doi: 10.1016/bs.pmbts.2015.10.008.

Tritos N. Focus on growth hormone deficiency and bone in adults. Best Pract Res Clin Endocrinol Metab. 2017;31(1):49-57. doi: 10.1016/j.beem.2017.02.002.

Blum W, Alherbish A, Alsagheir A, El Awwa A, Kaplan W, Koledova E, et al. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders. Endocr Connect. 2018;7(6):R212-R22. doi: 10.1530/EC-18-0099.

Yakar S, Werner H, Rosen C. Insulin-like growth factors: actions on the skeleton. J Mol Endocrinol. 2018;61(1):T115-T37. doi: 10.1530/JME-17-0298.

Schiffer L, Kempegowda P, Arlt W, O’Reilly M. Mechanisms in endocrinology: The sexually dimorphic role of androgens in human metabolic disease. Eur J Endocrinol. 2017;177(3):R125-R43. doi: 10.1530/EJE-17-0124.

Barakat R, Oakley O, Kim H, Jin J, Ko C. Extra-gonadal sites of estrogen biosynthesis and function. BMB Rep. 2016;49(9):488-96. doi: 10.5483/bmbrep.2016.49.9.141.

Levasseur R. Fisiología del tejido óseo. EMC - aparato locomotor. 2019;52(2):1-25. doi: 10.1016/S1286-935X(19)42130-8.

Hendrickx G, Boudin E, van Hul W. A look behind the scenes: The risk and pathogenesis of primary osteoporosis. Nature Rev Rheumatol. 2015;11(8):462-74. 10.1038/nrrheum.2015.

Danila R, Livadariu R, Branisteanu D. Calcitonin revisited in 2020. Acta Endocrinol. 2019;15(4):544-8. doi: 10.4183/aeb.2019.544.

Felsenfeld A, Levine B. Calcitonin, the forgotten hormone: Does it deserve to be forgotten? Clin Kidney J. 2015;8(2):180-7. doi: 10.1093/ckj/sfv011.

Martin T, Sims N. Calcitonin physiology, saved by a lysophospholipid. J Bone Miner Res. 2015;30(2):212-5. doi: 10.1002/jbmr.2449.

Silva B, Bilezikian J. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015;22:41-50. doi: 10.1016/j.coph.2015.03.005.

Bollerslev J, Pretorius M, Heck A. Parathyroid hormone independent hypercalcemia in adults. Best Pract Res Clin Endocrinol Metab. 2018;32(5):621-38. doi: 10.1016/j.beem.2018.06.005.

Goltzman D, Mannstadt M, Marcocci C. Physiology of the calcium-parathyroid hormone-vitamin D Axis. Front Horm Res. 2018;50:1-13. doi: 10.1159/000486060.

Gou GH, Tseng FJ, Wang SH, Chen PJ, Shyu JF, Pan RY. Nutritional factors associated with femoral neck bone mineral density in children and adolescents. BMC Musculoskelet Disord. 2019;20(1):520. doi: 10.1186/s12891-019-2901-9.

Fabiani R, Naldini G, Chiavarini M. Dietary patterns in relation to low bone mineral density and fracture risk: A systematic review and meta-analysis. Adv Nutr. 2019;10(2):219-36. doi: 10.1093/advances/nmy073.

Movassagh E, Vatanparast H. Current evidence on the association of dietary patterns and bone health: A scoping review. Adv Nutr. 2017;8(1):1-16. doi: 10.3945/an.116.013326.

Saponaro F, Saba A, Zucchi R. An update on vitamin D metabolism. Int J Mol Sci. 2020;21(18):6573. doi: 10.3390/ijms21186573.

Khammissa R, Fourie J, Motswaledi M, Ballyram R, Lemmer J, Feller L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. Biomed Res Int. 2018;2018:9276380. doi: 10.1155/2018/9276380.

Langsetmo L, Barr S, Dasgupta K, Berger C, Kovacs C, Josse R, et al. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism. Nutr Res. 2016;36(4):328-36. doi: 10.1016/j.nutres.2015.12.010.

Melaku Y, Gill T, Adams R, Shi Z. Association between dietary patterns and low bone mineral density among adults aged 50 years and above: Findings from the North West Adelaide Health Study (NWAHS). Br J Nutr. 2016;116(8):1437-46. doi: 10.1017/S0007114516003366.

Yu P, Ning C, Zhang Y, Tan G, Lin Z, Liu S, et al. Bone-inspired spatially specific piezoelectricity induces bone regeneration. Theranostics. 2017;7(13):3387-97. doi: 10.7150/thno.19748.

Kammire D, Walkup M, Ambrosius W, Lenchik L, Shapses S, Nicklas BJ, et al. Effect of weight change following intentional weight loss on bone health in older adults with obesity. Obesity. 2019;27(11):1839-45. doi: 10.1002/oby.22604.

Proietto J. Obesity and bone. F1000Res. 2020;9:F1000. doi: 10.12688/f1000research.20875.1.

Walsh J, Vilaca T. Obesity, type 2 diabetes and bone in adults. Calcif Tissue Int. 2017;100(5):528-35. doi: 10.1007/s00223-016-0229-0.

Gkastaris K, Goulis D, Potoupnis M, Anastasilakis A, Kapetanos G. Obesity, osteoporosis and bone metabolism. J Musculoskelet Neuronal Interact. 2020;20(3):372-81.

Maghrabi A, Wolski K, Abood B, Licata A, Pothier C, Bhatt D, et al. Two-year outcomes on bone density and fracture incidence in patients with T2DM randomized to bariatric surgery versus intensive medical therapy. Obesity. 2015;23(12):2344-8. doi: 10.1002/oby.21150.

Zhou Y, Chi J, Lv W, Wang Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes Metab Res Rev. 2021;37(2):e3377. doi: 10.1002/dmrr.3377.

Nilsson A, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: A population-based study. J Bone Miner Res. 2017;32(5):1062-71. doi: 10.1002/jbmr.3057.

Rubin M. Skeletal fragility in diabetes. Ann N Y Acad Sci. 2017;1402(1):18-30. doi: 10.1111/nyas.13463.

Furst J, Bandeira L, Fan W, Agarwal S, Nishiyama K, McMahon D, et al. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101(6):2502-10. doi: 10.1210/jc.2016-1437.

Karim L, Moulton J, Van Vliet M, Velie K, Robbins A, Malekipour F, et al. Bone microarchitecture, biomechanical properties, and advanced glycation end-products in the proximal femur of adults with type 2 diabetes. Bone. 2018;114:32-9. doi: 10.1016/j.bone.2018.05.030.

Hars M, Trombetti A. Body composition assessment in the prediction of osteoporotic fractures. Curr Opin Rheumatol. 2017;29(4):394-401. doi: 10.1097/BOR.0000000000000406.

Rosenberg I. Sarcopenia: origins and clinical relevance. Clin Geriatr Med. 2011;27(3):337-9. doi: 10.1016/j.cger.2011.03.003.

Choi K. Sarcopenia and sarcopenic obesity. Korean J Intern Med. 2016;31(6):1054-60. doi: 10.3904/kjim.2016.193.

Cruz-Jentoft A, Baeyens J, Bauer J, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412-23. doi: 10.1093/ageing/afq034.

Scicchitano B, Pelosi L, Sica G, Musarò A. The physiopathologic role of oxidative stress in skeletal muscle. Mech Ageing Dev. 2018;170:37-44. doi: 10.1016/j.mad.2017.08.009.

Hirschfeld H, Kinsella R, Duque G. Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int. 2017;28(10):2781-90. doi: 10.1007/s00198-017-4151-8.

Tagliaferri C, Wittrant Y, Davicco M, Walrand S, Coxam V. Muscle and bone, two interconnected tissues. Ageing Res Rev. 2015;21:55-70. doi: 10.1016/j.arr.2015.03.002.

Takeuchi T, Soen S, Ishiguro N, Yamanaka H, Tanaka S, Kobayashi M, et al. Predictors of new bone erosion in rheumatoid arthritis patients receiving conventional synthetic disease-modifying antirheumatic drugs: Analysis of data from the drive and desirable studies. Mod Rheumatol. 2021;31(1):34-41. doi: 10.1080/14397595.2019.1703484.

Kaji H. Interaction between muscle and bone. J Bone Metab. 2014;21(1):29-40. doi: 10.11005/jbm.2014.21.1.29.

Cedeno-Veloz B, López-Dóriga B, Duque G. Osteosarcopenia: A narrative review. Rev Esp Geriatr Gerontol. 2019;54(2):103-8. doi: 10.1016/j.regg.2018.09.010.

Buondonno I, Rovera G, Sassi F, Rigoni M, Lomater C, Parisi S, et al. Vitamin D and immunomodulation in early rheumatoid arthritis: A randomized double-blind placebo-controlled study. PLoS One. 2017;12(6):e0178463. doi: 10.1371/journal.pone.0178463.

Ishiguro N, Tanaka Y, Yamanaka H, Yoneda T, Ohira T, Okubo N, et al. Efficacy of denosumab with regard to bone destruction in prognostic subgroups of Japanese rheumatoid arthritis patients from the phase II drive study. Rheumatology. 2019;58(6):997-1005. doi: 10.1093/rheumatology/key416.

Schett G, Gravallese E. Bone erosion in rheumatoid arthritis: Mechanisms, diagnosis and treatment. Nat Rev Rheumatol. 2012;8(11):656-64. doi: 10.1038/nrrheum.2012.153.

Takeuchi R, Katagiri W, Endo S, Kobayashi T. Exosomes from conditioned media of bone marrow-derived mesenchymal stem cells promote bone regeneration by enhancing angiogenesis. PLoS One. 2019;14(11):e0225472. doi: 10.1371/journal.pone.0225472.

Manor B, Lipsitz L. Physiologic complexity and aging: implications for physical function and rehabilitation. Prog Neuropsychopharmacol Biol Psychiatry. 2013;45:287-93. doi: 10.1016/j.pnpbp.2012.08.020.

Tricco A, Thomas S, Veroniki A, Hamid J, Cogo E, Strifler L, et al. Comparisons of interventions for preventing falls in older adults: A systematic review and meta-analysis. JAMA. 2017;318(17):1687-99. doi: 10.1001/jama.2017.15006.

Moskalev A, Anisimov V, Aliper A, Artemov A, Asadullah K, Belsky D, et al. A review of the biomedical innovations for healthy longevity. Aging. 2017;9(1):7-25. doi: 10.18632/aging.101163.

Shammas M. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011;14(1):28-34. doi: 10.1097/MCO.0b013e32834121b1.

Ferrucci L, González-Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, et al. Measuring biological aging in humans: A quest. Aging Cell. 2020;19(2):e13080. doi: 10.1111/acel.13080.

Labbadia J, Morimoto R. The biology of proteostasis in aging and disease. Annu Rev Biochem. 2015;84:435-64. doi: 10.1146/annurev-biochem-060614-033955.

Kirkwood T, Kowald A. The free-radical theory of ageing-older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support. Bioessays. 2012;34(8):692-700. doi: 10.1002/bies.201200014.

Medkour Y, Dakik P, McAuley M, Mohammad K, Mitrofanova D, Titorenko V. Mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. Oxid Med Cell Longev. 2017;2017:2916985. doi: 10.1155/2017/2916985.

Salhotra A, Shah H, Levi B, Longaker M. Mechanisms of bone development and repair. Nat Rev Mol Cell Biol. 2020;21(11):696-711. doi: 10.1038/s41580-020-00279-w.

Corrado A, Cici D, Rotondo C, Maruotti N, Cantatore F. Molecular basis of bone aging. Int J Mol Sci. 2020;21(10):3679. doi: 10.3390/ijms21103679.

Ganguly P, El-Jawhari J, Giannoudis P, Burska A, Ponchel F, Jones E. Age-related changes in bone marrow mesenchymal stromal cells: A potential impact on osteoporosis and osteoarthritis development. Cell Transplant. 2017;26(9):1520-9. doi: 10.1177/0963689717721201.

Rharass T, Lucas S. Mechanisms in endocrinology: Bone marrow adiposity and bone, a bad romance? Eur J Endocrinol. 2018;179(4):R165-R82. doi: 10.1530/EJE-18-0182.

Jilka R, O’Brien C. The role of osteocytes in age-related bone loss. Curr Osteoporos Rep. 2016;14(1):16-25. doi: 10.1007/s11914-016-0297-0.

Qin L, Liu W, Cao H, Xiao G. Molecular mechanosensors in osteocytes. Bone Res. 2020;8:23. doi: 10.1038/s41413-020-0099-y.

Hong A, Kim S. Effects of resistance exercise on bone health. Endocrinol Metab (Seoul). 2018;33(4):435-44. doi: 10.3803/EnM.2018.33.4.435.

Pinheiro M, Oliveira J, Bauman A, Fairhall N, Kwok W, Sherrington C. Evidence on physical activity and osteoporosis prevention for people aged 65+ years: A systematic review to inform the WHO guidelines on physical activity and sedentary behaviour. Int J Behav Nutr Phys Act. 2020;17(1):150. doi: 10.1186/s12966-020-01040-4.

Coronado-Zarco R, Olascoaga-Gómez de L, García-Lara A, Quinzaños-Fresnedo J, Nava-Bringas T, Macías-Hernández S. Nonpharmacological interventions for osteoporosis treatment: Systematic review of clinical practice guidelines. Osteoporos Sarcopenia. 2019;5(3):69-77. doi: 10.1016/j.afos.2019.09.005.

Allen J, Sun Y, Woods J. Exercise and the regulation of inflammatory responses. Prog Mol Biol Transl Sci. 2015;135:337-54. doi: 10.1016/bs.pmbts.2015.07.003.

Faienza M, Lassandro G, Chiarito M, Valente F, Ciaccia L, Giordano P. How physical activity across the lifespan can reduce the impact of bone ageing: A literature review. Int J Environ Res Public Health. 2020;17(6):1862. doi: 10.3390/ijerph17061862.

Tong X, Chen X, Zhang S, Huang M, Shen X, Xu J, et al. The effect of exercise on the prevention of osteoporosis and bone angiogenesis. Biomed Res Int. 2019;8171897. doi: 10.1155/2019/8171897.

Benedetti M, Furlini G, Zati A, Letizia M. The effectiveness of physical exercise on bone density in osteoporotic patients. Biomed Res Int. 2018:4840531. doi: 10.1155/2018/4840531.

Pedersen B, Saltin B. Exercise as medicine - Evidence for prescribing exercise as therapy in 26 different chronic diseases. Scand J Med Sci Sports. 2015;25(3):1-72. doi: 10.1111/sms.12581.

Kemmler W, Shojaa M, Kohl M, von Stengel S. Exercise effects on bone mineral density in older men: A systematic review with special emphasis on study interventions. Osteoporos Int. 2018;29(7):1493-504. doi: 10.1007/s00198-018-4482-0.

Gómez-Cabello A, Ara I, González-Agüero A, Casajús J, Vicente-Rodríguez G. Effects of training on bone mass in older adults: A systematic review. Sports Med. 2012;42(4):301-25. doi: 10.2165/11597670-000000000-00000.

Mora J, Valencia W. Exercise and older adults. Clin Geriatr Med. 2018;34(1):145-62. doi: 10.1016/j.cger.2017.08.007.

Kohrt W, Bloomfield S, Little K, Nelson M, Yingling V, American College of Sports Medicine. American College Of Sports Medicine position stand: Physical activity and bone health. Med Sci Sports Exerc. 2004;36(11). doi: 10.1249/01.mss.0000142662.21767.58.

Bull F, Al-Ansari S, Biddle S, Borodulin K, Buman M, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med. 2020;54(24):1451-62. doi: 10.1136/bjsports-2020-102955.

Vetrovsky T, Steffl M, Stastny P, Tufano J. The efficacy and safety of lower-limb plyometric training in older adults: A systematic review. Sports Med. 2019;49(1):113-31. doi: 10.1007/s40279-018-1018-x.

Beavers KM, Beavers DP, Martin SB, Marsh AP, Lyles, MF, Lenchik L, et al. Change in Bone Mineral Density during Weight Loss with Resistance Versus Aerobic Exercise Training in Older Adults. J Gerontol A Biol Sci Med Sci. 2017;72(11):1582–85. doi: 10.1093/gerona/glx048

Cornish SM, Myrie SB, Bugera EM, Chase JE, Turczyn D, Pinder M. Omega-3 supplementation with resistance training does not improve body composition or lower biomarkers of inflammation more so than resistance training alone in older men. Nutr Res. 2018;60:87–95. doi:10.1016/j.nutres.2018.09.005

Cunha PM, Ribeiro AS, Tomeleri CM, Schoenfeld BJ, Silva AM, Souza MF, et al. The effects of resistance training volume on osteosarcopenic obesity in older women. J Sports Sci. 2018;36(14):1564–71. doi: 10.1080/02640414.2017.1403413

Holwerda AM, Overkamp M, Paulussen KJM, Smeets JSJ, Van Kranenburg J, Backx EMP, et al. Protein Supplementation after Exercise and before Sleep Does Not Further Augment Muscle Mass and Strength Gains during Resistance Exercise Training in Active Older Men. J Nutr. 2018;148(11):1723–32.doi: 10.1093/jn/nxy169

Huovinen V, Ivaska KK, Kiviranta R, Bucci M, Lipponen H, Sandboge S, et al. Bone mineral density is increased after a 16-week resistance training intervention in elderly women with decreased muscle strength. Eur J Endocrinol. 2016;175(6):571–82. doi: 10.1530/EJE-16-0521

Mosti MP, Kaehler N, Stunes AK, Hoff J, Syversen U. Maximal strength training in postmenopausal women with osteoporosis or osteopenia. J Strength Cond Res. 2013;27(10):2879–86. doi: 10.1519/JSC.0b013e318280d4e2

Pinto CL, Botelho PB, Carneiro JA, Mota JF. Impact of creatine supplementation in combination with resistance training on lean mass in the elderly. J Cachexia Sarcopenia Muscle. 2016;7(4):413–21. doi: 10.1002/jcsm.12094

Shanb A, Youssef E. The impact of adding weight-bearing exercise versus nonweight bearing programs to the medical treatment of elderly patients with osteoporosis. J Family Community Med. 2014;21(3):176-81.doi: 10.4103/2230-8229.142972

Stunes AK, Syversen U, Berntsen S, Paulsen G, Stea TH, Hetlelid KJ, et al. High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. Eur J Appl Physiol. 2017;117(6):1073–84.doi: 10.1007/s00421-017-3588-y

Publicado

2021-04-21

Como Citar

Arenas Sanchez, G. A., Cortés, L. J., Arriagada Arce, M., Peiret Villacura, L., & Espinoza Salinas, A. (2021). Determinantes da densidade mineral óssea e o papel do exercício com cargas em pessoas idosas. Jornal De Nutrição Clínica E Metabolismo, 4(3), 136–149. https://doi.org/10.35454/rncm.v4n3.292