Neuronutrición: repercusiones de los excesos y de las deficiencias nutricionales
DOI:
https://doi.org/10.35454/rncm.v5n3.367Palabras clave:
Neuronutrición, Neuromoduladores, Metabolismo cerebralResumen
La neuronutrición es la ciencia que estudia el efecto de los nutrientes en el sistema nervioso y sus funciones. Esta área investiga la relación directa que existe entre los nutrimentos y la producción de los neuromoduladores, los cuales desempeñan un papel primordial en la regulación de muchos aspectos de la actividad cerebral, como el humor, la motivación, el estrés, los comportamientos alimentarios (hambre y saciedad), el sueño y toda la parte emocional que interviene en la alimentación.
Descargas
Citas
Devi A, Narayanan R. A review on neuronutrition. Asian J Dairy Food Res. 2019;38(2):128-33. doi: 10.18805/ajdfr.DR-1454.
Sivori D, Fros CF. Nutrición (de)mente: neuronutrición: la ciencia de la alimentación inteligente. Grijalbo. 2016. p. 20.
Marot CM. Nutrición cerebral. Acta Médica. 2003;11(1):1-6.
Topcuoglu MA, Arsava EM. Neuronutrition: An emerging concept. En: Arsava E (editor). Nutrition in neurologic disorders. Springer Cham. 2017. p. 155-206.
Food and Agriculture Organization. Human energy requirements. Report of a Joint FAO/WHO/UNU Expert Consultation. 2001. p. 1-96.
Carbajal AA. Ingestas recomendadas, objetivos nutricionales y guías alimentarias. En: Carbajal AA (editor). Manual de nutrición y dietética. Madrid: Universidad Complutense de Madrid. 2013. p. 18-33.
Ruiz L. Importancia de la nutrición y de la alimentación en el estado de salud. Jaén: Universidad de Jaén. 2019. p. 1-84.
Hernández TM. Recomendaciones nutricionales para el ser humano: actualización. Rev Cubana de Invest Biomed. 2004;23(4):266-92.
World Health Organization. Body mass index - BMI 2022. Consultado el 27 de febrero de 2022). Disponible en: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/body-mass-index
Organización Mundial de la Salud. Obesidad y sobrepeso. 2021. Consultado el 27 de febrero de 2022). Disponible en: https://www.paho.org/es/temas/prevencion-obesidad
Hernández A. Calculadora del porcentaje de grasa corporal (PGC). 2022. Consultado el 27 de febrero de 2022. Disponible en: http://www.i-natacion.com/articulos/fisiologia/pgc.html
Torres BY, Pérez HL, Torres FG, Brito HB, Ojeda NJ. Enfermedades asociadas en niños sobrepeso y obesos y síndrome de resistencia a la insulina. 2018. Consultado el 27 de febrero de 2022. en: http://www.morfovirtual2018.sld.cu/index.php/morfovirtual/2018/paper/viewPaper/170/531
Ruud J, Steculorum SM, Brüning JC. Neuronal control of peripheral insulin sensitivity and glucose metabolism. Nat Commun. 2017;8,15259. doi: 10.1038/ncomms15259.
Ibarra A. Sus alimentos, su cerebro: Nutrición psiquiátrica en niños y adolescentes. 2019. Consultado el 27 de febrero de 2022. Disponible en: https://www.researchgate.net/publication/331273292_Sus_alimentos_su_cerebro_Nutricion_psiquiatrica_en_ninos_y_adolescentes
Martins LB, Braga Tibães JR, Sanches M, Jacka F, Berk M, Teixeira AL. Nutrition-based interventions for mood disorders. Expert Rev Neurother. 2021;21(3):303-15. doi: 10.1080/14737175.2021.1881482.
Kullmann S, Heni M, Hallschmid M. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96(4):1169-209. doi: 10.1152/physrev.00032.2015.
Cheng G, Huang C, Deng H, Wang H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta‐analysis of longitudinal studies. Intern Med J. 2012;42(5):484-91. doi: 10.1111/j.1445-5994.2012.02758.x.
Nepal B, Brown LJ, Anstey KJ. Rising midlife obesity will worsen future prevalence of dementia. PloS one. 2014;9(9):e99305. doi: 10.1371/journal.pone.0099305.
Hölscher C. Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs. 2020;29(4):333-48. .
Van Dyken P, Lacoste B. Impact of metabolic syndrome on neuroinflammation and the blood-brain barrier. Front Neurosci. 2018;12:930. doi: 10.3389/fnins.2018.00930.
Erickson MA, Banks WA. Neuroimmune axes of the blood-brain barriers and blood-brain interfaces: Bases for physiological regulation, disease states, and pharmacological interventions. Pharmacol Rev. 2018;70(2):278-314. doi: 10.1124/pr.117.014647.
López-Hernández E, Solís H. Generalidades sobre el metabolismo cerebral relacionadas con la isquemia-anoxia. Rev Mex Enf Cardiol. 1995;3(4):93-7.
Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest. 2017;127(1):24-32. doi: 10.1172/JCI88878.
Davidson TL, Monnot, A, Neal AU, Martin AA, Horton JJ, Zheng W. The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiol Behav. 2012;107(1):26-33. doi: 10.1016/j.physbeh.2012.05.015.
Nation DA, Sweeney MD, Montagne A, Sagare AP, D’Orazio LM, Pachicano M, et al. Blood-brain barrier breakdown is an early biomarker of human cognitive dysfunction. Nat Med. 2019;25(2):270-6. doi: 10.1038/s41591-018-0297-y.
Kanoski SE, Zhang Y, Zheng W, Davidson TL. The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. J Alzheimers Dis. 2010;21(1):207-19. doi: 10.3233/JAD-2010-091414.
Rhea EM, Banks WA. Role of the blood-brain barrier in central nervous system insulin resistance. Front Neurosci. 2019;13:521. doi: 10.3389/fnins.2019.00521.
Jaramillo-Magaña JJ. Metabolismo cerebral. Rev Mex Anestesiol. 2013;36(1):S183-5.
Lareo LR. Costo energético de procesos cerebrales con especial énfasis en aprendizaje y memoria. Rev Fac Ciencias. 2006;11(2):77-84.
Thompson GJ, Riedl V, Grimme T, Drzezga A, Herman P, Hyder F. The whole-brain “global” signal from resting state fMRI as a potential biomarker of quantitative state changes in glucose metabolism. Brain Connect. 2016;6(6):435-47. doi: 10.1089/brain.2015.0394.
Karbowski J. Global and regional brain metabolic scaling and its functional consequences. BMC Biol. 2007;5:18. doi: 10.1186/1741-7007-5-18.
Jiang D, Lin Z, Liu P, Sur S, Xu C. Normal variations in brain oxygen extraction fraction are partly attributed to differences in end-tidal CO2. J Cereb Blood Flow Metab. 2020;40(7):1492-500. doi: 10.1177/0271678X19867154.
Marrero AM. Nutrición cerebral. Estado del arte. Acta Méd Cuba. 2016;17(2):1-15.
Heras-Sandoval D, Pedraza-Chaverri J, Pérez-Rojas JM. Role of docosahexaenoic acid in the modulation of glial cells in Alzheimer’s disease. J Neuroinflammation. 2016;13:61. doi: 10.1186/s12974-016-0525-7.
Salvador AG, Antolinez SQ, Furundarena IH, Aróstegui SU, Bilbao SA, Villaran VMC, et al. Enfermedades mentales y nutrición saludable. Nuevas alternativas para su tratamiento. Rev Esp Nutr Comunitaria. 2021;27(1):70-81.
Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanzá-Martínez, V, Freeman MP, et al. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry. 2015;2(3):271-4. doi: 10.1016/S2215-0366(14)00051-0.
Kahan S, Manson JE. Nutrition counseling in clinical practice. How clinicians can do better. Jama. 2017;318(12):1101-2. doi: 10.1001/jama.2017.10434.
Adan RAH, van der Beek EM, Buitelaar JK, Cryan JF, Hebebrand J, Higgs S, et al. Nutritional psychiatry: Towards improving mental health by what you eat. Eur Neuropsychopharmacol. 2019;29(12):1321-32. doi: 10.1016/j.euroneuro.2019.10.011.
Olmedo RL. Hambre oculta por deficiencia de micronutrientes: estrategias agronómicas, biotecnológicas y farmacológicas para su erradicación. Trabajo de fin de grado. Sevilla: Universidad de Sevilla. 2020. p. 46.
Ekstrand B, Scheers N, Rasmussen MK, Young JF, Ross AB, Landberg R. Brain foods-the role of diet in brain performance and health. Nutr Rev. 2021;79(6):693-708. doi: 10.1093/nutrit/nuaa091.
Martínez GRM, Jiménez OAI, López SAM, Ortega RM. Estrategias nutricionales que mejoran la función cognitiva. Nutr Hosp. 2018;35(6):16-9. doi: 10.20960/nh.2281.
Lassale C, Batty GD, Baghdadli A, Jacka F, Sánchez-Villegas A, Kivimäki M, et al. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol Psychiatry. 2019;24:965-86. doi: 10.1038/s41380-018-0237-8.
Mondanelli G, Volpi C. The double life of serotonin metabolites: In the mood for joining neuronal and immune systems. Curr Opin Immunol. 2021;70:1-6. doi: 10.1016/j.coi.2020.11.008.
Gangwisch JE, Hale L, García L, Malaspina D, Opler MG, Payne ME, et al. High glycemic index diet as a risk factor for depression: Analyses from the Women’s Health Initiative. Am J Clin Nutr. 2015;102(2):454-63. doi: 10.3945/ajcn.114.103846.
Prehn K, Jumpertz von Schwartzenberg R, Mai K, Zeitz U, Witte AV, Hampel D, et al. Caloric restriction in older adults - Differential effects of weight loss and reduced weight on brain structure and function. Cereb Cortex. 2017;27(3):1765-78. doi: 10.1093/cercor/bhw008.
Wegierski T, Kuznicki J. Neuronal calcium signaling via store-operated channels in health and disease. Cell Calcium. 2018;74:102-11. doi: 10.1016/j.ceca.2018.07.001.
Cuomo A, Maina G, Bolognesis S, Rosso G, Crescenzi BB, Zanobini F, et al. Prevalence and correlates of vitamin D deficiency in a sample of 290 in patients with mental illness. Front Psychiatry. 2019;10:167. doi: 10.3389/fpsyt.2019.00167.
White DJ, Camfield DA, Maggini, S, Pipingas, A, Silberstein R, Stough C, et al. The effect of a single dose of multivitamin and mineral combinations with and without guaraná on functional brain activity during a continuous performance task. Nutr Neurosci. 2017;20(1):8-22. doi: 10.1179/1476830514Y.0000000157.
Smith AD, Warren MJ, Refsum H. Vitamin B12. Adv Food Nutr Res. 2018;83:215-79. doi: 10.1016/bs.afnr.2017.11.005.
Enderami A, Zarghami M, Darvishi-Khezri H. The effects and potential mechanisms of folic acid on cognitive function: A comprehensive review. Neurol Sci. 2018;39(10):1667-75. doi: 10.1007/s10072-018-3473-4.
Bekdash RA. Neuroprotective effects of choline and other methyl donors. Nutrients. 2019;11(12):2995. doi: 10.3390/nu11122995.
Liu L, Qiao S, Zhuang L, Xu S, Chen L, Lai, Q, et al. Choline intake correlates with cognitive performance among elder adults in the United States. Behav Neurol. 2021:2962245. doi: 10.1155/2021/2962245.
Bozzatello P, Rocca P, Mantelli E, Bellino S. Polyunsaturated fatty acids: what is their role in treatment of psychiatric disorders? Int J Mol Sci. 2019;20(21):5257. doi: 10.3390/ijms20215257.
Wolters M, von der Haar A, Baalmann AK, Wellbrock M, Heise TL, Rach S. Effects of n-3 polyunsaturated fatty acid supplementation in the prevention and treatment of depressive disorders - A systematic review and meta-analysis. Nutrients. 2021;13(4):1070. doi: 10.3390/nu13041070.
Koga N, Ogura J, Yoshida F, Hattori K, Hori H, Aizawa E, et al. Altered polyunsaturated fatty acid levels in relation to proinflammatory cytokines, fatty acid desaturase genotype, and diet in bipolar disorder. Transl Psychiatry. 2019;9(208):1-9. doi: 10.1038/s41398-019-0536-0.
Grosso G, Micek A, Marventano S, Castellano S, Mistretta A, Pajak A, et al. Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J Affect Disord. 2016;205:269-81. doi: 10.1016/j.jad.2016.08.011.
McNamara RK, Welge JA. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder. Bipolar Disord. 2016;18(3):300-6. doi: 10.1111/bdi.12386.
Calder PC. Mechanisms of action of (n-3) fatty acids. J Nutrition. 2012;142(3);592S-9S. doi: 10.3945/jn.111.155259.
Ruiz-Roso MB, Olivares-Álvaro E, Quintela JC, Ballesteros S, Espinosa-Parrilla JF, Ruiz-Roso B, et al. Effects of low phytanic acid-concentrated DHA on activated microglial cells: Comparison with a standard phytanic acid-concentrated DHA. NeuroMolecular Med. 2018;20(3):328-42. doi: 10.1007/s12017-018-8496-8.
Thesing CS, Bot M, Milaneschi Y, Giltay EJ, Penninx BW. Omega-3 polyunsaturated fatty acid levels and dysregulations in biological stress systems. Psychoneuroendocrinology. 2018;97:206-15. doi: 10.1016/j.psyneuen.2018.07.002.
Hashimoto M, Katakura M, Tanabe Y, Al Mamun A, Inoue T, Hossain S, et al. n-3 fatty acids effectively improve the reference memory-related learning ability associated with increased brain docosahexaenoic acid-derived docosanoids in aged rats. Biochim Biophys Acta. 2015;1851(2):203-9. doi: 10.1016/j.bbalip.2014.10.009.
Chang CY, Kuan YH, Li JR, Chen WY, Ou YC, Pan HC, et al. Docosahexaenoic acid reduces cellular inflammatory response following permanent focal cerebral ischemia in rats. J Nutr Biochem. 2013;24(12):2127-37. doi: 10.1016/j.jnutbio.2013.08.004.
Healy-Stoffel M, Levant B. N-3 (omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets. 2018;17(3):216-32. doi: 10.2174/1871527317666180412153612.
Valenzuela BA. Acido linoleico conjugado (CLA), sus efectos benéficos como un alimento funcional. En: Pagano T, Fernández E (editores). Lípidos: aspectos tecnológicos y abordaje nutricional en la salud y en la enfermedad. Montevideo: Udelar. CSEP. 2010. p. 291-314.
Monaco A, Ferrandino I, Boscaino F, Cocca E, Cigliano L, Maurano F, et al. Conjugated linoleic acid prevents age-dependent neurodegeneration in a mouse model of neuropsychiatric lupus via the activation of an adaptive response. J Lipid Res. 2018;59(1):48-57. doi: 10.1194/jlr.M079400.
Moreno RMC, Marquez RC, Oberg A, Papatheodorou S. Effects of conjugated linoleic acid (CLA) on HDL-C and triglyceride levels in subjects with and without the metabolic syndrome: A systematic review and meta-analysis. J Clinic Lipidology. 2019;13(3):e45-6. doi: 10.1016/j.jacl.2019.04.076.
Elharram A, Czegledy NM, Golod M, Milne GL, Pollock E, Bennett BM, et al. Deuterium‐reinforced polyunsaturated fatty acids improve cognition in a mouse model of sporadic Alzheimer’s disease. FEBS J. 2017;284(23):4083-95. doi: 10.1111/febs.14291.
Barzegarzadeh B, Hatami H, Dehghan G, Khajehnasiri N, Khoobi M, Sadeghian R. Conjugated linoleic acid-curcumin attenuates cognitive deficits and oxidative stress parameters in the ethidium bromide-induced model of demyelination. Neurotox Res. 2021;39(3):815-25. doi: 10.1007/s12640-020-00310-0.
Nasca C, Bigio B, Lee FS, Young SP, Kautz MM, Albright A, et al. Acetyl-L-carnitine deficiency in patients with major depressive disorder. Proc Natl Acad Sci USA. 2018;115(34):8627-32. doi: 10.1073/pnas.1801609115.
Post RM. Myriad of implications of acetyl-L-carnitine deficits in depression. Proc Natl Acad Sci USA. 2018;115(34):8475-7. doi: 10.1073/pnas.1811389115.
Nie LJ, Liang J, Shan F, Xu YY, Yan CY, Zhou X, et al. A UPLC-MS/MS method for determination of endogenous L‐carnitine and acetyl‐L‐carnitine in serum of patients with depression. Biomed Chromatogr. 2021;35(3):e4991. doi: 10.1002/bmc.4991.
Chiechio S, Canonico PL, Grilli M. L-Acetylcarnitine: A mechanistically distinctive and potentially rapid-acting antidepressant drug. Int J Mol Sci. 2018;19(1):11. doi: 10.3390/ijms19010011.
Veronese N, Stubbs B, Solmi M, Ajnakina O, Carvalho AF, Maggi S. Acetyl-L-carnitine supplementation and the treatment of depressive symptoms: A systematic review and meta-analysis. Psychosom Med. 2018;80(2):154-9. doi: 10.1097/PSY.0000000000000537.
Peedicayil J. L-Acetylcarnitine as a histone acetylation modulator in psychiatric disorders. Psychopharmacology (Berl). 2018;235(11):3361-2. doi: 10.1007/s00213-018-5043-0.
Lim SY, Kim EJ, Kim A, Lee HJ, Choi HJ, Yang SJ. Nutritional factors affecting mental health. Clin Nutr Res. 2016;5(3):143-52. doi: 10.7762/cnr.2016.5.3.143.
Tarleton EK, Littenberg B, MacLean CD, Kennedy AG, Daley C. Role of magnesium supplementation in the treatment of depression: A randomized clinical trial. PloS one. 2017;12(6):e0180067. doi: 10.1371/journal.pone.0180067.
Wang J, Um P, Dickerman BA, Liu J. Zinc, magnesium, selenium and depression: A review of the evidence, potential mechanisms and implications. Nutrients. 2018;10(5):584. doi: 10.3390/nu10050584.
Ávalos F, Ibarra A, Angulo L, Palacios G. Factores inmuno-metabólicos y de estado nutricio asociados a la conducta suicida en el paciente psiquiátrico del hospital regional de psiquiatría No. 22. RSGate. 2019:1-15. doi: 10.13140/RG.2.2.30398.33601/1.
Hoepner CT, McIntyre RS, Papakostas GI. Impact of supplementation and nutritional interventions on pathogenic processes of mood disorders: A review of the evidence. Nutrients. 2021;13(3):767. doi: 10.3390/nu13030767.
Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn-Schmiedeberg’s Arch Pharmacol. 2021;394(11):2197-222. doi: 10.1007/s00210-021-02161-8.
Scholey A. Nutrients for neurocognition in health and disease: Measures, methodologies and mechanisms. Proc Nutr Soc. 2018;77(1):73-83. doi: 10.1017/S0029665117004025.
Deoni SCL. Neuroimaging of the developing brain and impact of nutrition. Nestle Nutr Inst Workshop Ser. 2018;89:155-74. doi: 10.1159/000486500.
King JA, Frank GKW, Thompson PM, Ehrlich S. Structural neuroimaging of anorexia nervosa: Future directions in the quest for mechanisms underlying dynamic alterations. Biol Psychiatry. 2018;83(3):224-34. doi: 10.1016/j.biopsych.2017.08.011.
Jiang HY, Zhang X, Yu ZH, Zhang Z, Deng M, Zhao JH, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res. 2018;104:130-6. doi: 10.1016/j.jpsychires.2018.07.007.
Nasr NF. Psychological impact of probiotics and fermented foods on mental health of human in integrated healthy lifestyle. Int J Curr Microbiol App Sci. 2018;7(08);2815-22. doi: 10.20546/ijcmas.2018.708.296.
Baker DG, Ekhator NN, Kasckow JW, Hill KK, Zoumakis E, Dashevsky BA, et al. Plasma and cerebrospinal fluid interleukin-6 concentrations in posttraumatic stress disorder. Neuroimmunomodulation. 2001;9(4):209-17. doi: 10.1159/000049028.
Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear-and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology. 2017;42(1):254-70. doi: 10.1038/npp.2016.146.
Choudhary AK, Lee YY. Neurophysiological symptoms and aspartame: What is the connection? Nutr Neurosci. 2018;21(5):306-16. doi: 10.1080/1028415X.2017.1288340.
Norwitz NG, Naidoo U. Nutrition as metabolic treatment for anxiety. Front Psychiatry. 2021;12:598119. doi: 10.3389/fpsyt.2021.598119.
Singh SK, Barreto GE, Aliev G, Echeverria V. Ginkgo biloba as an alternative medicine in the treatment of anxiety in dementia and other psychiatric disorders. Curr Drug Metab. 2017;18(2):112-9. doi: 10.2174/1389200217666161201112206.
Lejri I, Grimm, A, Eckert, A. Ginkgo biloba extract increases neurite outgrowth and activates the Akt/mTOR pathway. PloS one. 2019;14(12):e0225761. doi: 10.1371/journal.pone.0225761.
Wang M, Peng H, Peng Z, Huang K, Li T, Li L, et al. Efficacy and safety of ginkgo preparation in patients with vascular dementia: A protocol for systematic review and meta-analysis. Medicine. 2020;99(37):e22209. doi: 10.1097/MD.0000000000022209.
Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW. Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends Neurosci. 2016;39(11):763-81. doi: 10.1016/j.tins.2016.09.002.
Wang Y, Yuan X, Kang Y, Song X. Tryptophan-kynurenine pathway as a novel link between gut microbiota and schizophrenia: A review. Trop J Pharm Res. 2019;18(4):897-905. doi: 10.4314/tjpr.v18i4.30.
Guaza C. Microbiota y esclerosis múltiple. An Microbiota Probióticos Prebióticos. 2021;2(2):159-62.
Mörkl S, Butler MI, Holl A, Cryan JF, Dinan TG. Probiotics and the microbiota-gut-brain axis: Focus on psychiatry. Curr Nutr Rep. 2020;9(3):171-82. doi: 10.1007/s13668-020-00313-5.
John R, Singla A. Functional foods: Components, health benefits, challenges, and major projects. DRC Sustainable Future. 2021;2(1):61-72. doi: 10.37281/DRCSF/2.1.7.
Cabral DF, Rice J, Morris TP, Rundek T, Pascual-Leone A, Gomes-Osman J. Exercise for brain health: An investigation into the underlying mechanisms guided by dose. Neurotherapeutics. 2019;16:580-99. doi: 10.1007/s13311-019-00749-w.
Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection. Neural Plast. 2017;2017:7260130. doi: 10.1155/2017/7260130.
Bettio LEB, Thacker JS, Rodgers SP, Brocardo PS, Christie BR, Gil-Mohapel J. Interplay between hormones and exercise on hippocampal plasticity across the lifespan. Biochim Biophys Acta Mol Basis Dis. 2020;1866(8):165821. doi: 10.1016/j.bbadis.2020.165821.
Schmitt A, Upadhyay N, Martin JA, Rojas S, Strüder HK, Boecker H. Modulation of distinct intrinsic resting state brain networks by acute exercise bouts of differing intensity. Brain Plast. 2019;5(1):39-55. doi: 10.3233/BPL-190081.
Lin TW, Tsai SF, Kuo YM. Physical exercise enhances neuroplasticity and delays Alzheimer’s disease. Brain Plast. 2018;4(1):95-110. doi: 10.3233/BPL-180073.
Bettio L, Thacker JS, Hutton C, Christie BR. Modulation of synaptic plasticity by exercise. Intern Rev Neurobiol. 2019;147:295-322. doi: 10.1016/bs.irn.2019.07.002.
Etnier JL, Chang YK. Exercise, cognitive function, and the brain: Advancing our understanding of complex relationships. J Sport Health Sci. 2019;8(4):299-300. doi: 10.1016/j.jshs.2019.03.008.
Piepmeier AT, Etnier JL, Wideman L, Berry NT, Kincaid Z, Weaver M. A preliminary investigation of acute exercise intensity on memory and BDNF isoform concentrations. Eur J Sport Sci. 2020;20(6):819-30. doi: 10.1080/17461391.2019.1660726.
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 María Estela López-Hernández
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.