Impacto del ejercicio sobre el metabolismo de los lípidos y la dislipidemia

Palabras clave: lípidos, actividad física, atención primaria

Resumen

La práctica crónica del ejercicio induce una serie de adaptaciones celulares y orgánicas que modifican la forma en que el cuerpo humano metaboliza todos los macronutrientes, incluidos los lípidos. El ejercicio de duración y el ejercicio de resistencia provocan diferentes respuestas que resultan en efectos diferenciales sobre el metabolismo de los lípidos y las lipoproteínas. Estos efectos son cuantitativa y cualitativamente diferentes y mediados por distintas vías de  señalización. Esta revisión, resume la evidencia pertinente sobre la repercusión del ejercicio en el metabolismo de los lípidos y las lipoproteínas, y finaliza con algunas recomendaciones sobre la práctica del ejercicio para los pacientes con dislipidemia en el ámbito de la atención primaria

Descargas

La descarga de datos todavía no está disponible.

Citas

Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative Biology of Exercise. Cell. 2014;159(4):738-49.

Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725-40.

Organización Mundial de la Salud. Actividad física [online]. 2019. [Accessed 4 Jun. 2019]. Available at: https://www.who.int/dietphysicalactivity/pa/es/

Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 1985; 100(2): 126-31.

Ferguson B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. 2014. J Can Chiropr Assoc. 2014;58(3):328.

Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes (Lond). 2007; 32(1): 1-11.

Mohrman DE, Heller LJ. Cardiovascular physiology. 9th edition. New York: McGraw-Hill; 2018.

Dempsey JA, Blain GM, Amann M. Are type III-IV muscle afferents required for a normal steady-state exercise hyperpnoea in humans? J Physiol. 2014;592(3):463-74.

Ball D. Metabolic and endocrine response to exercise: sympathoadrenal integration with skeletal muscle. J Endocrinol. 2015;224(2):R79-95.

Havel RJ, Naimark A, Borchgrevink CF. Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-1-C14. J Clin Invest. 1963; 42(7):1054-63.

Van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 2001; 536(Pt1): 295-304.

Scott W, Stevens J, Binder–Macleod SA. Human skeletal muscle fiber type Classifications. Phys Ther. 2001;81(11): 1810–6.

Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry. 1972;11(14):262-33.

Hardie DG. AMP-activated protein kinase: A key system mediating metabolic responses to exercise. Med Sci Sports Exerc. 2004; 36(1): 28-34.

Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;104(29):12017-22.

Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005;1(6):361-70.

Wideman L, Weltman JY, Hartman ML, Veldhuis JD, Weltman A. Growth hormone release during acute and chronic aerobic and resistance exercise. Sports Med. 2002; 32(15):987-1004.

Perrini S, Laviola L, Carreira MC, Cignarelli A, Natalicchio A, Giorgino F. The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol. 2010; 205(3): 201-10.

Bodine S, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001; 3(11): 1014-9.

Liu Z, Jahn LA, Wei L, Long W, Barrett EJ. Amino acids stimulate translation initiation and protein synthesis through an Akt-independent pathway in human skeletal muscle. J Clin Endocrinol Metab. 2002; 87(12): 5553-8.

Léger B, Cartoni R, Praz M, Lamon S, Dériaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006; 576(Pt 3): 923-33.

Janson LW, Tischler ME. The Big Picture: Medical Biochemistry. New York: McGraw-Hill; 2018.

Nikkari T, Luukkainen P, Pietinen P, Puska P. Fatty acid composition of serum lipid fractions in relation to gender and quality of dietary Fat. Ann Med. 1995; 27(4): 491-8.

Kwiterovich PO Jr. The metabolic pathways of high-density lipoprotein, low-density lipoprotein, and triglycerides: a current review. Am J Cardiol. 2000; 86(12A): 5L-10L.

Redgrave TG. Chylomicron metabolism. Biochem Soc Trans. 2004; 32(Pt 1): 79-82.

Cladaras C, Hadzopoulou-Cladaras M, Nolte RT, Atkinson D, Zannis VI. The complete sequence and structural analysis of human apolipoprotein B-100: relationship between apoB-100 and apoB-48 forms. EMBO J. 1986; 5(13): 3495-507.

Vaisar T. Proteomics investigations of HDL: challenges and promise. Curr Vasc Pharmacol. 2012; 10(4): 410-21.

Lewis GF. Determinants of plasma HDL concentrations and reverse cholesterol transport. Curr Opin Cardiol. 2006; 21(4): 345-52.

Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA, et al. Harper’s Illustrated Biochemistry. 31st edition. New York: McGraw-Hill; 2018.

Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero-protective effect of high density lipoproteins. J Intern Med. 2008; 263(3): 256-73.

Coyle EF, Jeukendrup AE, Wagenmakers AJ, Saris WH. Fatty acid oxidation is directly regulated by carbohydrate metabolism during exercise. Am J Physiol. 1997; 273(2 Pt 1): E268-75.

Horowitz JF, Klein S. Lipid metabolism during endurance exercise. Am J Clin Nutr. 2000; 72(2 Suppl): 558S-63S.

Ruegsegger GN, Booth FW. Health Benefits of Exercise. Cold Spring Harb Perspect Med. 2018; 8(7): pii: a029694.

Silva RC, Diniz Mde F, Alvim S, Vidigal PG, Fedeli LM, Barreto SM. Physical Activity and Lipid Profile in the ELSA- Brasil Study. Arq Bras Cardiol. 2016;107(1):10-9.

Lee DH, de Rezende LFM, Eluf-Neto J, Wu K, Tabung FK, Giovannucci EL. Association of type and intensity of physical activity with plasma biomarkers of inflammation and insulin response. Int J Cancer. 2019;145(2):360-9.

Shaw K, Gennat H, O’Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane Database Syst Rev. 2006;(4):CD003817.

Fikenzer K, Fikenzer S, Laufs U, Werner C. Effects of endurance training on serum lipids. Vascul Pharmacol. 2018;101: 9-20.

Carson V, Ridgers ND, Howard BJ, Winkler EA, Healy GN, Owen N, et al. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS One. 2013; 8(8): e71417.

Jenkins GP, Evenson KR, Herring AH, Hales D, Stevens J. Cardiometabolic Correlates of Physical Activity and Sedentary Patterns in U.S. Youth. Med Sci Sports Exerc. 2017;49(9): 1826-33.

Woudberg NJ, Mendham AE, Katz AA, Goedecke JH, Lecour S. Exercise intervention alters HDL subclass distribution and function in obese women. Lipids Health Dis. 2018; 17(1):232.

Sponder M, Campean IA, Dalos D, Emich M, Fritzer-Szekeres M, Litschauer B, et al. Effect of long-term physical activity on PCSK9, high- and low-density lipoprotein cholesterol, and lipoprotein(a) levels: a prospective observational trial. Pol Arch Intern Med. 2017;127(7-8):506-11.

Cai M, Zou Z. Effect of aerobic exercise on blood lipid and glucose in obese or overweight adults: A meta-analysis of randomized controlled trials. Obes Res Clin Pract. 2016;10(5):589-602.

Millán J, Hernández-Mijares A, Ascaso JF, Blasco M, Brea A, Díaz Á, et al. The real measurement of non-HDL-cholesterol: Atherogenic cholesterol. Clin Investig Arterioscler. 2016; 28(6): 265-70.

Price PH, Kaizer AM, Daniels SR, Jenkins TM, Inge TH, Eckel RH. Phisical Activity Improves Lipid and Weight-Loss Outcomes After Metabolic Bariatric Surgery in Adolescents with Severe Obesity. Obesity (Silver Spring). 2019;27(6):989-96.

Jones PR, Rajalahti T, Resaland GK, Aadland E, Steene-Johannessen J, Anderssen SA, et al. Associations of PA and sedentary time with lipoprotein subclasses in Norwegian schoolchildren: The Active Smarter Kids (ASK) study. Atherosclerosis. 2019. pii: S0021-9150(19)30447-2.

Mendivil CO, Zheng C, Furtado J, Lel J, Sacks FM. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30(2):239-45.

Mendivil CO, Rimm EB, Furtado J, Chiuve SE, Sacks FM. Low-density lipoproteins containing apolipoprotein C-III and the risk of coronary heart disease. Circulation. 2011; 124(19):2065-72.

Jensen MK, Rimm EB, Furtado JD, Sacks FM. Apolipoprotein C-III as a Potential Modulator of the Association Between HDL-Cholesterol and Incident Coronary Heart Disease. J Am Heart Assoc. 2012; 1(2): pii: jah3-e000232.

Koch M, Furtado JD, Jiang GZ, Gray BE, Cai T, Sacks F, et al. Associations of anthropometry and lifestyle factors with HDL subspecies according to apolipoprotein C-III. J Lipid Res. 2017; 58(6):1196-203.

Wilson DP, Jacobson TA, Jones PH, Koschinsky ML, McNeal CJ, Nordestgaard BG, et al. Use of Lipoprotein(a) in clinical practice: A biomarker whose time has come. A scientific statement from the National Lipid Association. J Clin Lipidol. 2019; 13(3):374–92.

Bermúdez V, Aparicio D, Rojas E, Peñaranda L, Finol F, Acosta L, et al. An elevated level of physical activity is associated with normal lipoprotein(a) levels in individuals from Maracaibo, Venezuela. Am J Ther. 2010;17(3):341-50.

Vanhees L, Geladas N, Hansen D, Kouidi E, Niebauer J, Reiner Z, et al. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular risk factors: recommendations from the EACPR. Part II. Eur J Prev Cardiol. 2012;19(5):1005-33.

Altena TS, Michaelson JL, Ball SD, Guilford BL, Thomas TR. Lipoprotein subfraction changes after continuous or intermittent exercise training. Med Sci Sports Exerc. 2006; 38(2):367-72.

Wood PD, Haskell WL, Blair SN, Williams PT, Krauss RM, Lindgren FT, et al. Increased exercise level plasma lipoprotein concentrations: a one-year, randomized, controlled study in sedentary middle-aged men. Metabolism. 1983;32(1):31-9.

Zapata-Lamana R, Cigarroa I, Diaz E, Saavedra C. Resistance exercise improves serum lipids in adult women. Rev Med Chil. 2015;143(3):289-96.

Prabhakaran B, Dowling EA, Branch JD, Swain DP, Leutholtz BC. Effect of 14 weeks of resistance training on lipid profile and body fat percentage in premenopausal women. Br J Sports Med. 1999;33(3):190-5.

Lira FS, Yamashita AS, Uchida MC, Zanchi NE, Gualano B, Martins E Jr, et al. Low and moderate, rather than high intensity strength exercise induces benefit regarding plasma lipid profile. Diabetol Metab Syndr. 2010;2:31.

Sheikholeslami Vatani D, Ahmadi S, Ahmadi Dehrashid K, Gharibi F. Changes in cardiovascular risk factors and inflammatory markers of young, healthy, men after six weeks of moderate or high intensity resistance training. J Sports Med Phys Fitness. 2011; 51(4):695–700.

Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014; 44(2):211-21.

Shaw I, Shaw BS, Krasilshchikov O. Comparison of aerobic and combined aerobic and resistance training on low-density lipoprotein cholesterol concentrations in men. Cardiovasc J Afr. 2009;20(5):290-5.

Hansen D, Niebauer J, Cornelissen V, Barna O, Neunhäuserer D, Stettler C, et al. Exercise Prescription in Patients with Different Combinations of Cardiovascular Disease Risk Factors: A Consensus Statement from the EXPERT Working Group. Sports Med. 2018; 48(8):1781-97.

Jellinger PS, Handelsman Y, Rosenblit PD, Bloomgarden ZT, Fonseca VA, Garber AJ, et al. American Association of Clinical Endocrinologists and American College of Endocrinology Guidelines for management of dyslipidemia and prevention of cardiovascular disease. Endocr Pract. 2017;23(Suppl 2):1-87.

Publicado
2019-10-01
Cómo citar
Scher-Nemirovsky, E. A., Ruiz-Manco, D., & Mendivil, C. O. (2019). Impacto del ejercicio sobre el metabolismo de los lípidos y la dislipidemia. Revista De Nutrición Clínica Y Metabolismo, 2(2). https://doi.org/10.35454/rncm.v2n2.004
Sección
Artículos de revisión